AIGC背后的技术分析 | 人脸识别和人脸检测

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
简介: 机器学习案例:人脸识别和人脸检测

640.jpg


# 01、Python Dlib框架及人脸识别模型库
## 1、Dlib框架



Dlib是基于C++的一个跨平台通用的框架。Dlib内容涵盖机器学习、图像处理、数值算法、数据压缩等。Dlib提供了Python的接口,在Python中安装Dlib时要先安装cmake模块和scikit-image模块,由于在安装dlib模块过程中需要对C++代码进行编译,所以安装dlib模块前要先安装好Visual Studio 2015以后版本。

使用pip模块管理工具下载dlib框架的相关模块。
1)下载cmake模块

pip install cmake
2)下载scikit-image模块
pip install scikit-image
3)下载dlib模块
pip install dlib
## 2、人脸识别模型库
在本案例中,使用下面两个已经训练好的人脸识别模型进行项目设计。

1)人脸关键点检测模型

shape_predictor_68_face_landmarks.dat是通过机器学习已经训练好的人脸关键点检测器,使用这个模型,可以很方便地检测人的脸部,并计算出人脸的特征关键点。

2)人脸识别模型

dlib_face_recognition_resnet_model_v1.dat是已经训练好的ResNet(Residual Neural Network)人脸识别模型。ResNet是一种经机器学习训练出152层的神经网络,称为残差网络,它可以加速神经网络的训练,模型的准确率也很高。

人脸检测模型和人脸识别模型的下载地址为 http://dlib.net/files/。

# 02、人脸检测



## 1、人脸脸部检测



下面介绍应用人脸检测模型进行人脸检测的程序设计方法。

【例1】 找出图像中的正向人脸,并用方框标识出来。

应用已经训练好的人脸检测模型,进行人脸检测,构建人脸外部矩形框,其核心语句为:
js detector = dlib.get_frontal_face_detector() shape = predictor(img, 1)
程序设计步骤如图1所示。

640.jpg


■ 图1 人脸检测主要步骤


程序代码如下:
js import dlib from skimage import io # 使用 Dlib 的正面人脸检测器 frontal_face_detector detector = dlib.get_frontal_face_detector() # Dlib 的人脸检测模型 predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") # 图片所在路径 img = io.imread("x3.jpg") # 生成 Dlib 的图像窗口 win = dlib.image_window() win.set_image(img) # 使用 detector 检测器来检测图像中的人脸 faces = detector(img, 1) print("人脸数:", len(faces)) for i, d in enumerate(faces): print("第", i+1, "个人脸的矩形框坐标:", "left:", d.left(), "right:", d.right(), "top:", d.top(), "bottom:", d.bottom()) # 绘制人脸脸部矩形框 win.add_overlay(faces) # 保持图像 dlib.hit_enter_to_continue()
运行程序,可以输出每个人脸的脸部轮廓矩形框的坐标值,并在图片上绘制方框图形。检测单人及多人正面脸部的结果如图2所示。

640.jpg


■ 图2 检测正面脸部

shape_predictor_68_face_landmarks.dat是一个检测人脸68个关键点的检测器,应用这个模型,可以很方便地计算出人脸的特征关键点,并绘制出脸部轮廓。

提取脸部轮廓的核心语句为:

shape = predictor(img, faces[i]) # 计算脸部轮廓关键点的位置
  win.add_overlay(shape) # 绘制脸部轮廓线
目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 自动驾驶
「AIGC」Agent AI智能体的未来:技术、伦理与经济的交汇点
Agent AI智能体融合机器学习与深度学习,推动社会效率与创新,但也引发伦理、法律及就业挑战。技术上,它们能自我优化、积累知识,如自动驾驶汽车通过学习改善驾驶。伦理上,需建立AI准则,确保透明度和责任归属,如医疗AI遵循道德原则。经济上,AI改变就业市场结构,创造新职业,如AI顾问,同时要求教育体系更新。未来,平衡技术进步与社会影响至关重要。
143 0
|
2月前
|
存储 自然语言处理 API
通义万相AIGC技术Web服务体验评测
随着人工智能技术的不断进步,图像生成技术已成为创意产业的一大助力。通义万相AIGC技术,作为阿里云推出的一项先进技术,旨在通过文本到图像、涂鸦转换、人像风格重塑及人物写真创建等功能,加速艺术家和设计师的创作流程。本文将详细评测这一技术的实际应用体验。
121 4
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
要说2024年最热的技术,还得是AIGC
要说2024年最热的技术,还得是AIGC
38 0
|
18天前
|
机器学习/深度学习 数据采集 人工智能
作为AIGC技术的一种应用-bard
8月更文挑战第22天
31 15
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
|
1月前
|
人工智能
AIGC图生视频技术下的巴黎奥运高光时刻
图生视频,Powered By「 阿里云视频云 」
85 4
|
2月前
|
机器学习/深度学习 自然语言处理 算法
AIGC技术的核心算法与发展趋势
【7月更文第27天】随着人工智能技术的迅速发展,AIGC技术已经逐渐成为内容创造领域的一个重要组成部分。这些技术不仅能够帮助人们提高工作效率,还能创造出以往难以想象的新颖内容。本文将重点介绍几种核心算法,并通过一个简单的代码示例来展示如何使用这些算法。
42 7
|
2月前
|
存储 人工智能 搜索推荐
|
2月前
|
机器学习/深度学习 人工智能 算法
AIGC技术在创意设计行业的应用与影响
【7月更文第26天】随着人工智能技术的迅速发展,AIGC(Artificial Intelligence Generated Content,人工智能生成内容)已成为创意设计行业的一个重要趋势。AIGC不仅可以提高设计效率,还能激发设计师的创造力,推动设计领域的创新。本文将探讨AIGC技术在创意设计中的具体应用,并通过一个基于Python的简单示例展示如何使用AIGC技术生成创意设计元素。
47 1

热门文章

最新文章

下一篇
DDNS