AIGC背后的技术分析 | 人脸识别和人脸检测

本文涉及的产品
视觉智能开放平台,视频通用资源包5000点
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 机器学习案例:人脸识别和人脸检测

640.jpg


# 01、Python Dlib框架及人脸识别模型库
## 1、Dlib框架



Dlib是基于C++的一个跨平台通用的框架。Dlib内容涵盖机器学习、图像处理、数值算法、数据压缩等。Dlib提供了Python的接口,在Python中安装Dlib时要先安装cmake模块和scikit-image模块,由于在安装dlib模块过程中需要对C++代码进行编译,所以安装dlib模块前要先安装好Visual Studio 2015以后版本。

使用pip模块管理工具下载dlib框架的相关模块。
1)下载cmake模块

pip install cmake
2)下载scikit-image模块
pip install scikit-image
3)下载dlib模块
pip install dlib
## 2、人脸识别模型库
在本案例中,使用下面两个已经训练好的人脸识别模型进行项目设计。

1)人脸关键点检测模型

shape_predictor_68_face_landmarks.dat是通过机器学习已经训练好的人脸关键点检测器,使用这个模型,可以很方便地检测人的脸部,并计算出人脸的特征关键点。

2)人脸识别模型

dlib_face_recognition_resnet_model_v1.dat是已经训练好的ResNet(Residual Neural Network)人脸识别模型。ResNet是一种经机器学习训练出152层的神经网络,称为残差网络,它可以加速神经网络的训练,模型的准确率也很高。

人脸检测模型和人脸识别模型的下载地址为 http://dlib.net/files/。

# 02、人脸检测



## 1、人脸脸部检测



下面介绍应用人脸检测模型进行人脸检测的程序设计方法。

【例1】 找出图像中的正向人脸,并用方框标识出来。

应用已经训练好的人脸检测模型,进行人脸检测,构建人脸外部矩形框,其核心语句为:
js detector = dlib.get_frontal_face_detector() shape = predictor(img, 1)
程序设计步骤如图1所示。

640.jpg


■ 图1 人脸检测主要步骤


程序代码如下:
js import dlib from skimage import io # 使用 Dlib 的正面人脸检测器 frontal_face_detector detector = dlib.get_frontal_face_detector() # Dlib 的人脸检测模型 predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") # 图片所在路径 img = io.imread("x3.jpg") # 生成 Dlib 的图像窗口 win = dlib.image_window() win.set_image(img) # 使用 detector 检测器来检测图像中的人脸 faces = detector(img, 1) print("人脸数:", len(faces)) for i, d in enumerate(faces): print("第", i+1, "个人脸的矩形框坐标:", "left:", d.left(), "right:", d.right(), "top:", d.top(), "bottom:", d.bottom()) # 绘制人脸脸部矩形框 win.add_overlay(faces) # 保持图像 dlib.hit_enter_to_continue()
运行程序,可以输出每个人脸的脸部轮廓矩形框的坐标值,并在图片上绘制方框图形。检测单人及多人正面脸部的结果如图2所示。

640.jpg


■ 图2 检测正面脸部

shape_predictor_68_face_landmarks.dat是一个检测人脸68个关键点的检测器,应用这个模型,可以很方便地计算出人脸的特征关键点,并绘制出脸部轮廓。

提取脸部轮廓的核心语句为:

shape = predictor(img, faces[i]) # 计算脸部轮廓关键点的位置
  win.add_overlay(shape) # 绘制脸部轮廓线
目录
相关文章
|
11月前
|
搜索推荐
师资培训|AIGC在高校教学中的应用场景与案例分析-某产教科技公司
北京新大陆时代科技有限公司举办新一代信息技术名家大讲坛系列培训,旨在提升教师专业素质,加强“双师型”教师队伍建设。TsingtaoAI作为培训伙伴,提供全面支持。培训涵盖AIGC在高校教学的应用场景、教案生成及个性化教学资源定制等内容,助力提升教学质量与人才培养。
277 0
|
2月前
|
数据安全/隐私保护 计算机视觉 Python
人脸识别图片眨眼生成器,手机制作人脸眨眼张嘴, 代替真人刷脸软件
代码实现了基于面部特征点的人脸动画生成,包括眨眼和张嘴动作。它使用dlib进行人脸检测和特征点定位
|
2月前
|
数据安全/隐私保护 计算机视觉 Python
人脸识别图片眨眼生成器,虚拟相机过人脸软件, 秒解人脸识别软件
这个系统包含三个主要模块:人脸检测与特征点识别、虚拟相机实现和主程序入口。代码使用了dlib库
|
3月前
|
机器学习/深度学习 编解码 计算机视觉
MATLAB实现人脸识别检测与标出图片中人脸
MATLAB实现人脸识别检测与标出图片中人脸
118 0
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC技术发展与应用实践(一文读懂AIGC)
AIGC(人工智能生成内容)是利用AI技术生成文本、图像、音频、视频等内容的重要领域。其发展历程包括初期探索、应用拓展和深度融合三大阶段,核心技术涵盖数据收集、模型训练、内容生成、质量评估及应用部署。AIGC在内容创作、教育、医疗、游戏、商业等领域广泛应用,未来将向更大规模、多模态融合和个性化方向发展。但同时也面临伦理法律和技术瓶颈等挑战,需在推动技术进步的同时加强规范与监管,以实现健康可持续发展。
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
技术创新领域,AI(AIGC)是否会让TRIZ“下岗”?
法思诺创新直播间探讨了AI(AIGC)是否将取代TRIZ的问题。专家赵敏认为,AI与TRIZ在技术创新领域具有互补性,结合两者更务实。TRIZ提供结构化分析框架,AI加速数据处理和方案生成。DeepSeek、Gemini等AI也指出,二者各有优劣,应在复杂创新中协同使用。企业应建立双轨知识库,重构人机混合创新流程,实现全面升级。结论显示,AI与TRIZ互补远超竞争,结合二者是未来技术创新的关键。
167 0
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
师资培训|AIGC工具搜集和分析教学反馈-某教育科技集团
近日,TsingtaoAI为某教育科技集团交付AIGC赋能教师教学创新课程《AIGC工具搜集和分析教学反馈》,本师资培训旨在为高校教师提供系统化、实战化的AIGC应用指南,助力教师在教学过程中实现智能化、个性化的转变。本课程通过深入浅出的案例分析、项目实践和实操演练,全面覆盖AIGC工具的收集、应用与反馈分析方法。
334 32
|
8月前
|
人工智能 自然语言处理 搜索推荐
【潜意识Java】了解并详细分析Java与AIGC的结合应用和使用方式
本文介绍了如何将Java与AIGC(人工智能生成内容)技术结合,实现智能文本生成。
557 5
|
8月前
|
人工智能 搜索推荐 数据库
实时云渲染技术赋能AIGC,开启3D内容生态黄金时代
在AIGC技术革命的推动下,3D内容生态将迎来巨大变革。实时云渲染与Cloud XR技术将在三维数字资产的上云、交互及传播中扮演关键角色,大幅提升生产效率并降低门槛。作为云基础设施厂商,抓住这一机遇将加速元宇宙的构建与繁荣。AIGC不仅改变3D内容的生成方式,从手工转向自动生成,还将催生更多3D创作工具和基础设施,进一步丰富虚拟世界的构建。未来,通过文本输入即可生成引人注目的3D环境,多模态模型的应用将极大拓展创作的可能性。
|
10月前
|
人工智能 自然语言处理 数据可视化
什么是AIGC?如何使用AIGC技术辅助办公?
2分钟了解AIGC技术及其如何提高日常办公效率!
3369 4
什么是AIGC?如何使用AIGC技术辅助办公?

热门文章

最新文章