m基于ABC人工蜂群优化的无线传感器网络路由优化算法matlab仿真,对比优化前后网络寿命,效率以及可靠性

简介: m基于ABC人工蜂群优化的无线传感器网络路由优化算法matlab仿真,对比优化前后网络寿命,效率以及可靠性

1.算法仿真效果
matlab2022a仿真结果如下:

10259f3e27fa11d11920457cd1db6e65_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
54dae3f6faf44f0415886a9b8a2bad84_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
61176de12c3af5ddc9098432bca7364c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
bf3d282b8540507fe937595d37a67844_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
无线传感器网络通常使用电池电源,因此能量有限,属于一次性使用。因此,无线传感器网络在原理和应用平台上都有自己的特点:

•有限的能源和存储容量

   传感器节点通常布置在无人值守的运行环境中,节点能量由电池提供,但在使用过程中,电池的更换很不方便,因此无线传感器网络必须考虑如何解决能量有限的问题。因此,研究无线传感器网络优化算法以找到最大限度地减少能耗和提高无线传感器网络可靠性的最佳路径是非常重要的。

•自组织和动态拓扑结构

   无线传感器网络是一种对等网络,没有严格的网络中心,生存能力强。无线传感器网络的部署不需要预先设置基础设施,传感器节点可以通过分布式算法控制行为,快速加入网络,实现自身移动,支持网络拓扑的变化。

•高容错性

   当电池耗尽或环境变化时,传感器节点可能会出现故障,这将很难维护,甚至是一次性的。因此,使用优化算法来降低能耗和延长网络寿命是很重要的。

•以数据为中心

    物理地址对应于传统网络节点的数据传输,传感器节点本身没有IP地址。因此,无线传感器网络只关注数据。因此,无线传感器网络是非常高效的。

•直接与物理环境互动

   无线传感器网络最重要的任务是收集位置信息,这些信息需要直接与自然地理环境联系,并将现实世界的信息转换为特定的信号。因此,无线传感器网络可以单独完成数据的采样、存储、计算和发送。

   基于繁殖的人工蜂群算法包括三个步骤:蜂王的优先过程;蜂后的群集过程和幼蜂新卵的局部寻找过程。女王将把最好的基因留给下一代,因为女王基因的质量将直接决定算法的收敛速度和收敛精度。为了提高搜索效率,有必要选择最佳的女王基因。根据参考文献,采用模拟退火方法选择了蜂王基因的优先处理。根据模拟退火算法的思想,搜索过程如下:

24ecf6b5d3004bc01f48ce118476a450_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
68bfc6f3c3ced49c9bfba5ed1c1f3343_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
9412651f26931a61e4c67960218cdadd_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   其中参数和为预设索引,α、β满足“α+β=1”的方程。参数Li和Lj分别表示节点i和节点j之间的节点自由度值。根据公式4.3,我们可以得到链路质量条件。 

3.MATLAB核心程序
```%network topology
dmatrix= zeros(Nnode,Nnode);
matrix = zeros(Nnode,Nnode);
Trust = zeros(Nnode,Nnode);
for i = 1:Nnode
for j = 1:Nnode
Dist = sqrt((X(i) - X(j))^2 + (Y(i) - Y(j))^2);
%a link;
if Dist <= Radius
matrix(i,j) = 1;
Trust(i,j) = 1-((T(i)+T(j))/2);
dmatrix(i,j) = Dist;
else
matrix(i,j) = inf;
Trust(i,j) = inf;
dmatrix(i,j) = inf;
end;
end;
end;
pathS = 1;
pathE = Nnode;

.......................................................................

%Get the best weight
w1s=cpop(1,1);
w2s=cpop(1,2);
w1 = w1s/(w1s + w2s);
w2 = w2s/(w1s + w2s);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for ni = 1:length(Nnodes);
ni
%节点个数
Nnode = Nnodes(ni);

Delays2 = zeros(1,MTKL);%end-to-end delay
consmp2 = zeros(1,MTKL);%Network topology control overhead  
Srate2  = zeros(1,MTKL);%Packet delivery rate

for jn = 1:MTKL
    X = rand(1,Nnode)*SCALE;  
    Y = rand(1,Nnode)*SCALE; 
    T = rand(1,Nnode); 
    Delays = zeros(Times,1);
    consmp = zeros(Times,1);  
    Srate  = zeros(Times,1);
    for t = 1:Times
        if t == 1
           X = X;
           Y = Y;
        else
           %Nodes send random moves
           X = X + Vmax*rand;
           Y = Y + Vmax*rand;
        end
        %network topology 
        dmatrix= zeros(Nnode,Nnode);
        matrix = zeros(Nnode,Nnode);
        Trust  = zeros(Nnode,Nnode);
        for i = 1:Nnode 
            for j = 1:Nnode 
                Dist = sqrt((X(i) - X(j))^2 + (Y(i) - Y(j))^2); 
                %a link; 
                if Dist <= Radius 
                   matrix(i,j)  = 1;   
                   Trust(i,j)   = 1-((T(i)+T(j))/2);
                   dmatrix(i,j) = Dist; 
                else 
                   matrix(i,j)  = inf; 
                   Trust(i,j)   = inf; 
                   dmatrix(i,j) = inf; 
                end; 
            end; 
        end; 
        %Defines the communication start node and termination node
        tmp = randperm(Nnode);
        for i = 1:Nnode
            distA(i) = sqrt((X(i))^2 + (Y(i))^2);
            distB(i) = sqrt((X(i)-SCALE)^2 + (Y(i)-SCALE)^2);
        end
        [Va,Ia] = min(distA);
        [Vb,Ib] = min(distB);
        Sn  = Ia;
        En  = Ib;
        [paths,costs] = func_dijkstra_BF(Sn,En,dmatrix,Trust,w1,w2); 
        path_distance=min(Va,Vb); 
        for d=2:length(paths) 
            path_distance= path_distance + dmatrix(paths(d-1),paths(d)); 
        end 
        %end-to-end delay
        path_hops = min(length(paths)-1,1); 
        %The delay is calculated based on distance, packet length, and data packet rate
        Delays(t) = path_distance*(SLen/Smax)/1e3;
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        %Packet delivery rate 
        Ps       = rand/5;
        tmps     = 0;
        for ii = 1:path_hops
            tmps = tmps + path_distance*Ps^ii/1e3;
        end
        Srate(t) = 1-tmps;
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        %Network topology control overhead  
        consmp(t)= 1000*path_distance*(Eelec+Eelec+Efs);
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    end 
    Delays2(jn) = mean(Delays);
    Srate2(jn)  = mean(Srate);
    consmp2(jn) = mean(consmp);
end
ind1         = find(Delays2 > 1e5);
ind2         = find(Delays2 < 0);
ind          = unique([ind1,ind2]);
Delays2(ind) = [];
Delayn(ni)   = mean(Delays2);

ind1         = find(Srate2 > 1);
Srate2(ind1) = [];
Sraten(ni)   = mean(Srate2);
ind1         = find(consmp2 < 0);
consmp2(ind1)= [];
consmpn(ni)  = mean(consmp2);

end

figure;
for i = 1:Nnode
plot(X(i),Y(i), 'ro');
text(X(i),Y(i), num2str(i));
hold on
end
for i = 1:length(paths)-1
line([X(paths(i)) X(paths(i+1))], [Y(paths(i)) Y(paths(i+1))], 'LineStyle', '-');
hold on
end

figure;
plot(Nnodes,Delayn,'b-o');
grid on
xlabel('number of noders');
ylabel('End-To-End delay');
axis([Nnodes(1),Nnodes(end),0,120]);

figure;
plot(Nnodes,Sraten,'b-o');
grid on
xlabel('number of noders');
ylabel('Packet delivery rate');
axis([Nnodes(1),Nnodes(end),0.8,1.05]);

figure;
plot(Nnodes,consmpn,'b-o');
grid on
xlabel('number of noders');
ylabel('Energy consumption');
axis([Nnodes(1),Nnodes(end),0,0.1]);

save R_new1.mat Nnodes Delayn Sraten consmpn
```

相关文章
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
9月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章