Gradio机器学习模型快速部署工具【quickstart】翻译1

简介: Gradio机器学习模型快速部署工具【quickstart】翻译1

快速开始


先决条件:Gradio 需要 Python 3.7 或更高版本,仅此而已!


Gradio 是做什么的? gradio.app/quickstart/…


与他人分享您的机器学习模型、API 或数据科学工作流程的最佳方式_之一是创建一个交互式应用程序,让您的用户或同事可以在他们的浏览器中试用该演示。

Gradio 允许您**构建演示并共享它们,所有这些都在 Python 中。**通常只需几行代码!让我们开始吧。


Hello, World


要使用简单的“Hello, World”示例运行 Gradio,请执行以下三个步骤:

1.使用pip安装Gradio:


pip install gradio


2. 将以下代码作为 Python 脚本或在 Jupyter Notebook中运行:

import gradio as gr
def greet(name):
    return "Hello " + name + "!"
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo.launch()


3. 下面的演示将自动出现在 Jupyter Notebook 中,或者如果从脚本运行则在浏览器中弹出http://localhost:7860

image.png

image.png

渐变/你好世界 使用 Gradio构建。 托管在 image.png

在本地开发时,如果您想将代码作为 Python 脚本运行,您可以使用 Gradio CLI 以重新加载模式启动应用程序,这将提供无缝和快速的开发。在自动重新加载指南中了解有关重新加载的更多信息。

bash

复制代码

gradio app.py

注意:你也可以这样做python app.py,但它不会提供自动重新加载机制。


类Interface


https://gradio.app/quickstart/#the-interface-class

您会注意到,为了制作演示,我们创建了一个gradio.Interface. 此类Interface可以使用用户界面包装任何 Python 函数。在上面的示例中,我们看到了一个简单的基于文本的函数,但该函数可以是任何东西,从音乐生成器到税收计算器再到预训练机器学习模型的预测函数。

核心Interface类使用三个必需参数进行初始化:

  • fn: 环绕 UI 的函数
  • inputs: 哪个组件用于输入(例如"text","image""audio"
  • outputs: 用于输出的组件(例如"text","image""label"

让我们仔细看看这些用于提供输入和输出的组件。


组件属性


gradio.app/quickstart/…

我们Textbox在前面的示例中看到了一些简单的组件,但是如果您想更改 UI 组件的外观或行为方式怎么办?

假设您想要自定义输入文本字段——例如,您希望它更大并且有一个文本占位符。如果我们使用实际的类Textbox而不是使用字符串快捷方式,您可以通过组件属性访问更多的可定制性。


import gradio as gr
def greet(name):
    return "Hello " + name + "!"
demo = gr.Interface(
    fn=greet,
    # 改变外观
    inputs=gr.Textbox(lines=2, placeholder="Name Here..."),
    outputs="text",
)
demo.launch()


多个输入和输出组件


gradio.app/quickstart/…

假设您有一个更复杂的函数,具有多个输入和输出。在下面的示例中,我们定义了一个函数,它接受一个字符串、布尔值和数字,并返回一个字符串和数字。看一下如何传递输入和输出组件列表。


import gradio as gr
def greet(name, is_morning, temperature):
    salutation = "Good morning" if is_morning else "Good evening"
    greeting = f"{salutation} {name}. It is {temperature} degrees today"
    celsius = (temperature - 32) * 5 / 9
    return greeting, round(celsius, 2)
demo = gr.Interface(
    fn=greet,
    inputs=["text", "checkbox", gr.Slider(0, 100)],
    outputs=["text", "number"],
)
demo.launch()

image.png参考网址: gradio.app/quickstart/


目录
相关文章
|
12天前
|
机器人
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领精美计时器
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领精美计时器
60 3
|
1天前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
8 1
|
4天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
5天前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
18 2
|
10天前
|
机器人
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领 200个 精美计时器等你领
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领 200个 精美计时器等你领
52 2
|
15天前
|
人工智能 算法 测试技术
PAI 大语言模型评测平台现已支持裁判员模型评测
本文将为您介绍如何在 PAI 大语言模型评测平台,基于裁判员模型,评价开源模型或者微调后模型的性能。该功能限时免费,欢迎使用。
|
16天前
|
机器学习/深度学习 数据挖掘 Serverless
手把手教你全面评估机器学习模型性能:从选择正确评价指标到使用Python与Scikit-learn进行实战演练的详细指南
【10月更文挑战第10天】评估机器学习模型性能是开发流程的关键,涉及准确性、可解释性、运行速度等多方面考量。不同任务(如分类、回归)采用不同评价指标,如准确率、F1分数、MSE等。示例代码展示了使用Scikit-learn库评估逻辑回归模型的过程,包括数据准备、模型训练、性能评估及交叉验证。
38 1
|
6月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
233 14
|
6月前
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
108 1
|
6月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)

热门文章

最新文章