目标检测Trick | SEA方法轻松抹平One-Stage与Two-Stage目标检测之间的差距(二)

简介: 目标检测Trick | SEA方法轻松抹平One-Stage与Two-Stage目标检测之间的差距(二)

4、实验


4.1 消融实验

1、组件分析

  1. Anchor Loss

实现给学生基线带来了2.31 AP提升,而直接像素-像素匹配仅达到1.42 AP。这意味着当密集的像素负责预测任务时,有必要总结所有像素之间的分类信息,而不是模拟全局特征图。通过对的蒸馏,大型特征图中的信息以一种不平衡的方式避免了蒸馏,因为它集中在类别Anchor 上。

  1. Distance Loss

距离损失比基线高出约1.05 AP,这意味着在密集的检测器中,像素之间的相关性对形成密集的拓扑空间很重要。没有建模密集关系,而是限制了像素本身与学生和教师的每个类别Anchor 之间的距离,这使学生更好地正则化。

  1. Location Distribution Alignment

添加可以将FCOS-ResNet50提高到42.52 AP。它确实有助于对齐学生和教师的定位信息,这表明边界框层中的像素符合一种分布。此外,在边界框层上应用L2损失对性能没有好处,这表明匹配边界框层中的分布比直接的像素-像素蒸馏更有效。

2、超参数灵敏度

image.png

  1. Loss penalty coefficients

测试了等式中3个损失惩罚系数、和的敏感性(4)(详见图5)。结果表明,这些系数在较大范围内具有鲁棒性,验证了该方法的稳定性。

image.png

  1. Temperatures 测试了方程式中KLD损失的logit温度和。其结果如表6所示。该性能在0.01和5.0的范围内非常稳健。

4.2 主要实验

4.3 Faster RCNN与Cascade R-CNN

4.4 Mask RCNN与SOLOv2


5 局限与总结


5.1 局限

一般的限制在于提炼的本质,教师模型不可避免地需要将其知识传递给学生模型。虽然蒸馏主要是针对小的学生模型,但对于大的学生模型很难找到合适的教师模型。

5.2 总结

在本文中提出了用于目标探测器的SEA(SEmantic-Aware Alignment)蒸馏方法。为了弥合单阶段和两阶段检测器蒸馏之间的差距,SEA将每个像素作为实例,设计类别Anchor来总结场景图像中的分类信息,处理密集像素中的剧烈不平衡。在此基础上,对语义关系进行建模,并对其进行稀疏化,使蒸馏更加结构化和完整。此外,还有效地对齐了学生和教师之间的未被充分研究的边界框分支中的定位分布。大量的实验证明了SEA方法在目标检测和实例分割蒸馏任务方面的有效性和鲁棒性。


6、参考文献


[1]. SEA: Bridging the Gap Between One- and Two-stage Detector Distillation via SEmantic-aware Alignment.

相关文章
|
弹性计算 网络协议 网络安全
在Windows Server系统上配置静态IP
在Windows Server系统上配置静态IP的方法
在Windows Server系统上配置静态IP
|
自然语言处理 算法 数据挖掘
自蒸馏:一种简单高效的优化方式
背景知识蒸馏(knowledge distillation)指的是将预训练好的教师模型的知识通过蒸馏的方式迁移至学生模型,一般来说,教师模型会比学生模型网络容量更大,模型结构更复杂。对于学生而言,主要增益信息来自于更强的模型产出的带有更多可信信息的soft_label。例如下右图中,两个“2”对应的hard_label都是一样的,即0-9分类中,仅“2”类别对应概率为1.0,而soft_label
自蒸馏:一种简单高效的优化方式
已解决 BrokenPipeError: [Errno 32] Broken pipe
已解决 BrokenPipeError: [Errno 32] Broken pipe
9040 0
已解决 BrokenPipeError: [Errno 32] Broken pipe
|
9月前
|
算法 计算机视觉
YOLOv11改进策略【YOLO和Mamba】| 替换骨干 Mamba-YOLOv11-B !!! 最新的发文热点
YOLOv11改进策略【YOLO和Mamba】| 替换骨干 Mamba-YOLOv11-B !!! 最新的发文热点
486 9
|
9月前
|
机器学习/深度学习 编解码 计算机视觉
YOLOv11改进策略【卷积层】| ECCV-2024 小波卷积WTConv 增大感受野,降低参数量计算量,独家创新助力涨点
YOLOv11改进策略【卷积层】| ECCV-2024 小波卷积WTConv 增大感受野,降低参数量计算量,独家创新助力涨点
924 0
YOLOv11改进策略【卷积层】| ECCV-2024 小波卷积WTConv 增大感受野,降低参数量计算量,独家创新助力涨点
|
机器学习/深度学习 编解码 Java
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
《YOLO11目标检测创新改进与实战案例》专栏已更新100+篇文章,涵盖注意力机制、卷积优化、检测头创新、损失与IOU优化、轻量级网络设计等多方面内容。每周更新3-10篇,提供详细代码和实战案例,帮助您掌握最新研究和实用技巧。[专栏链接](https://blog.csdn.net/shangyanaf/category_12810477.html)
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
|
机器学习/深度学习 计算机视觉
【YOLOv11改进 - 注意力机制】 MSDA(Multi-Scale Dilated Attention):多尺度空洞注意力
【YOLOv11改进 - 注意力机制】 MSDA(Multi-Scale Dilated Attention):多尺度空洞注意力本文介绍了一种高效的视觉变换器——DilateFormer,通过多尺度扩张注意力(MSDA)模块,在保持高性能的同时显著降低计算成本。MSDA通过在滑动窗口内模拟局部和稀疏的块交互,实现了多尺度特征聚合。实验结果显示,DilateFormer在ImageNet-1K分类、COCO对象检测/实例分割和ADE20K语义分割任务上均取得了优异的性能,且计算成本比现有模型减少70%。
【YOLOv11改进 - 注意力机制】 MSDA(Multi-Scale Dilated Attention):多尺度空洞注意力
|
存储 安全 机器人
MemoryScope:为LLM聊天机器人配备的长期记忆系统
如何选择合适的方法构建自己的智能体助理呢?这里向您介绍强大、低延迟、安全可控的MemoryScope开源项目。
|
Cloud Native 容器 Kubernetes
基于阿里云服务网格流量泳道的全链路流量管理(三):无侵入式的宽松模式泳道
本文简要讨论了使用流量泳道来实现全链路流量灰度管理的场景与方案,并回顾了阿里云服务网格 ASM 提供的严格与宽松两种模式的流量泳道、以及这两种模式各自的优势与挑战。接下来介绍了一种基于 OpenTelemetry 社区提出的 baggage 透传能力实现的无侵入式的宽松模式泳道,这种类型的流量泳道同时具有对业务代码侵入性低、同时保持宽松模式的灵活特性的特点。同时,我们还介绍了新的基于权重的流量引流策略,这种策略可以基于统一的流量匹配规则,将匹配到的流量以设定好的比例分发到不同的流量泳道。
73741 16
基于阿里云服务网格流量泳道的全链路流量管理(三):无侵入式的宽松模式泳道