YOLOv5抛弃Anchor-Base方法 | YOLOv5u正式加入Anchor-Free大家庭

简介: YOLOv5抛弃Anchor-Base方法 | YOLOv5u正式加入Anchor-Free大家庭

「YOLOv5本来的样子还记得嘛」


话不多说,先总结一下历史上的YOLOv5吧:

  1. 「Backbone」:CSPDarkNet(没有Fusion Last模块)
  2. 「Neck」:PAFPN
  3. 「Head」:Coupled Head
  4. 「Assignment」:Line IOU Assignment
  5. 「Loss」:分类==>BCE Loss,回归==>CIoU Loss

这样大家应该比较清楚YOLOv5的大概知识脉络了;

这里借用其他小伙伴绘制的YOLOv5的结构图,可以看到YOLOv5的Backbone和Neck部分主要使用的是CBS模块和C3模块进行网络架构的搭建,而Head部分则是使用的耦合在一起的Head,即Coupled-Head,我们都知道,这样做可以进一步提升模型的执行效率,降低模型的推理时间和参数量:


「YOLOv5u是怎么回事呢」


我们先对比一下YOLOv8的YAML和YOLOv5u的YAML,你就全明白了!!!

image.png

是的,所谓的Anchor-Free版本的YOLOv5u,就是原始版本的YOLOv5+YOLOv8的Detect Head,当然肯定也继承了YOLOv8的种除了基于梯度流的网络聚合设计思想以外的所有优点,比如DFL Loss、TAL匹配以及Decoupled Head等。

最后看看YOLOv8的Detect Head的样子吧!!!依旧是借用网络小伙伴的一张图:

是不是很时髦的样子,是的,Decoupled Head+Anchor-Free就是潮流与时尚!所以YOLOv5就是继承了YOLOv8的检测头(上图中的红色框内的Head)和匹配方法以及损失函数。

记得一定去学习YOLOv5u哦!!!


参考


[1].https://github.com/ultralytics/ultralytics.

相关文章
|
23天前
|
机器学习/深度学习 算法 计算机视觉
超越YOLOv10/11、RT-DETRv2/3!中科大D-FINE重新定义边界框回归任务
中科大研究团队提出了一种新型目标检测器D-FINE,通过重新定义边界框回归任务,实现超越YOLOv10/11和RT-DETRv2/3的性能。D-FINE采用细粒度分布细化(FDR)和全局最优定位自蒸馏(GO-LSD)技术,显著提高了定位精度和检测速度。在COCO数据集上,D-FINE-L/X分别达到54.0%/55.8%的AP,并在NVIDIA T4 GPU上以124/78 FPS运行。
52 13
|
7月前
|
机器学习/深度学习 编解码 测试技术
【YOLOv8改进】LSKNet(Large Selective Kernel Network ):空间选择注意力 (论文笔记+引入代码)
YOLO目标检测专栏介绍了YOLO的有效改进和实战应用,包括卷积、主干网络、注意力机制和检测头的创新。提出的新模型LSKNet利用大型选择性核关注遥感场景的先验知识,动态调整感受野,提升目标检测效果。创新点包括LSKblock Attention、大型选择性核网络和适应性感受野调整。LSKNet在多个遥感检测基准上取得最优性能,且结构轻量。此外,文章提供了YOLOv8的LSKNet实现代码。更多详情可查阅相关专栏链接。
|
7月前
|
机器学习/深度学习 测试技术 计算机视觉
【YOLOv8改进】DAT(Deformable Attention):可变性注意力 (论文笔记+引入代码)
YOLO目标检测创新改进与实战案例专栏探讨了YOLO的有效改进,包括卷积、主干、注意力和检测头等机制的创新,以及目标检测分割项目的实践。专栏介绍了Deformable Attention Transformer,它解决了Transformer全局感受野带来的问题,通过数据依赖的位置选择、灵活的偏移学习和全局键共享,聚焦相关区域并捕获更多特征。模型在多个基准测试中表现优秀,代码可在GitHub获取。此外,文章还展示了如何在YOLOv8中应用Deformable Attention。
|
7月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力 (论文笔记+引入代码)
YOLO目标检测专栏介绍了创新的多尺度注意力模块EMA,它强化通道和空间信息处理,同时降低计算负担。EMA模块通过通道重塑和并行子网络优化特征表示,增强长距离依赖建模,在保持效率的同时提升模型性能。适用于图像分类和目标检测任务,尤其在YOLOv8中表现出色。代码实现和详细配置可在文中链接找到。
|
8月前
|
传感器 编解码 算法
Anchor-free应用一览:目标检测、实例分割、多目标跟踪
Anchor-free应用一览:目标检测、实例分割、多目标跟踪
163 0
|
机器学习/深度学习 算法 自动驾驶
改进YOLOX | Push-IOU+Dynamic Anchor进一步提升YOLOX性能
改进YOLOX | Push-IOU+Dynamic Anchor进一步提升YOLOX性能
198 0
YOLOv7默默更新了Anchor-Free | 无痛再涨1.4个mAP
YOLOv7默默更新了Anchor-Free | 无痛再涨1.4个mAP
411 0
|
机器学习/深度学习 自动驾驶 算法
3D检测经典 | 第一个Anchor-Free、第一个NMS-Free 3D目标检测算法!!!(一)
3D检测经典 | 第一个Anchor-Free、第一个NMS-Free 3D目标检测算法!!!(一)
231 0
|
算法 计算机视觉
3D检测经典 | 第一个Anchor-Free、第一个NMS-Free 3D目标检测算法!!!(二)
3D检测经典 | 第一个Anchor-Free、第一个NMS-Free 3D目标检测算法!!!(二)
109 0
|
机器学习/深度学习 算法 Go
PP-YoLoE | PP-YoLov2全面升级Anchor-Free,速度精度完美超越YoLoX和YoLov5(一)
PP-YoLoE | PP-YoLov2全面升级Anchor-Free,速度精度完美超越YoLoX和YoLov5(一)
283 0