白话Elasticsearch12-深度探秘搜索技术之基于multi_match + best fields语法实现dis_max+tie_breaker

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 白话Elasticsearch12-深度探秘搜索技术之基于multi_match + best fields语法实现dis_max+tie_breaker

20190806092132811.jpg

概述

继续跟中华石杉老师学习ES,第十二篇

课程地址: https://www.roncoo.com/view/55


官网


https://www.elastic.co/guide/en/elasticsearch/reference/7.2/query-dsl-multi-match-query.html


20190717235827251.png

20190717235853358.png


示例


GET /forum/article/_search
{
  "query": {
    "dis_max": {
      "queries": [
        {
          "match": {
            "title": {
              "query": "java beginner",
              "minimum_should_match": "50%",
              "boost": 2
            }
          }
        },
        {
          "match": {
            "content": {
              "query": "java beginner",
              "minimum_should_match": "50%"
            }
          }
        }
      ],
      "tie_breaker": 0.3
    }
  }
}

可以简化为

GET /forum/article/_search
{
  "query": {
    "multi_match": {
      "query": "java beginner",
      "type": "best_fields",
      "fields": [
        "title^2",
        "content"
      ],
      "tie_breaker": 0.3,
      "minimum_should_match": "50%"
    }
  }
}


minimum_should_match的主要用途 : 去长尾,long tail

长尾是什么呢,举个例子:假设你搜索5个关键词,但是很多结果是只匹配1个关键词的,其实跟你想要的结果相差甚远,这些结果就是长尾


minimum_should_match,控制搜索结果的精准度,只有匹配一定数量的关键词的数据,才能返回


返回结果

{
  "took": 1,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 5,
    "max_score": 1.4387287,
    "hits": [
      {
        "_index": "forum",
        "_type": "article",
        "_id": "2",
        "_score": 1.4387287,
        "_source": {
          "articleID": "KDKE-B-9947-#kL5",
          "userID": 1,
          "hidden": false,
          "postDate": "2017-01-02",
          "tag": [
            "java"
          ],
          "tag_cnt": 1,
          "view_cnt": 50,
          "title": "this is java blog",
          "content": "i think java is the best programming language"
        }
      },
      {
        "_index": "forum",
        "_type": "article",
        "_id": "4",
        "_score": 1.2162449,
        "_source": {
          "articleID": "QQPX-R-3956-#aD8",
          "userID": 2,
          "hidden": true,
          "postDate": "2017-01-02",
          "tag": [
            "java",
            "elasticsearch"
          ],
          "tag_cnt": 2,
          "view_cnt": 80,
          "title": "this is java, elasticsearch, hadoop blog",
          "content": "elasticsearch and hadoop are all very good solution, i am a beginner"
        }
      },
      {
        "_index": "forum",
        "_type": "article",
        "_id": "3",
        "_score": 1.0341108,
        "_source": {
          "articleID": "JODL-X-1937-#pV7",
          "userID": 2,
          "hidden": false,
          "postDate": "2017-01-01",
          "tag": [
            "hadoop"
          ],
          "tag_cnt": 1,
          "view_cnt": 100,
          "title": "this is elasticsearch blog",
          "content": "i am only an elasticsearch beginner"
        }
      },
      {
        "_index": "forum",
        "_type": "article",
        "_id": "1",
        "_score": 0.977973,
        "_source": {
          "articleID": "XHDK-A-1293-#fJ3",
          "userID": 1,
          "hidden": false,
          "postDate": "2017-01-01",
          "tag": [
            "java",
            "hadoop"
          ],
          "tag_cnt": 2,
          "view_cnt": 30,
          "title": "this is java and elasticsearch blog",
          "content": "i like to write best elasticsearch article"
        }
      },
      {
        "_index": "forum",
        "_type": "article",
        "_id": "5",
        "_score": 0.7116974,
        "_source": {
          "articleID": "DHJK-B-1395-#Ky5",
          "userID": 3,
          "hidden": false,
          "postDate": "2019-05-01",
          "tag": [
            "elasticsearch"
          ],
          "tag_cnt": 1,
          "view_cnt": 10,
          "title": "this is spark blog",
          "content": "spark is best big data solution based on scala ,an programming language similar to java"
        }
      }
    ]
  }
}


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
1月前
|
存储 运维 监控
Elasticsearch Serverless 高性价比智能日志分析关键技术解读
本文解析了Elasticsearch Serverless在智能日志分析领域的关键技术、优势及应用价值。
Elasticsearch Serverless 高性价比智能日志分析关键技术解读
|
10天前
|
存储 缓存 固态存储
Elasticsearch高性能搜索
【11月更文挑战第1天】
28 6
|
9天前
|
API 索引
Elasticsearch实时搜索
【11月更文挑战第2天】
22 1
|
1月前
|
人工智能
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
172 2
|
1月前
|
自然语言处理 搜索推荐 关系型数据库
elasticsearch学习六:学习 全文搜索引擎 elasticsearch的语法,使用kibana进行模拟测试(持续更新学习)
这篇文章是关于Elasticsearch全文搜索引擎的学习指南,涵盖了基本概念、命令风格、索引操作、分词器使用,以及数据的增加、修改、删除和查询等操作。
20 0
elasticsearch学习六:学习 全文搜索引擎 elasticsearch的语法,使用kibana进行模拟测试(持续更新学习)
|
1月前
|
Web App开发 JavaScript Java
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
这篇文章是关于如何使用Spring Boot整合Elasticsearch,并通过REST客户端操作Elasticsearch,实现一个简单的搜索前后端,以及如何爬取京东数据到Elasticsearch的案例教程。
174 0
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
|
8天前
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
21 5
|
1月前
|
存储 JSON Java
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
116 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
|
2月前
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
|
3月前
|
数据可视化 Docker 容器
一文教会你如何通过Docker安装elasticsearch和kibana 【详细过程+图解】
这篇文章提供了通过Docker安装Elasticsearch和Kibana的详细过程和图解,包括下载镜像、创建和启动容器、处理可能遇到的启动失败情况(如权限不足和配置文件错误)、测试Elasticsearch和Kibana的连接,以及解决空间不足的问题。文章还特别指出了配置文件中空格的重要性以及环境变量中字母大小写的问题。
一文教会你如何通过Docker安装elasticsearch和kibana 【详细过程+图解】