带你读《云原生机密计算最佳实践白皮书》——部署TensorFlow Serving在线推理服务(2)

简介: 带你读《云原生机密计算最佳实践白皮书》——部署TensorFlow Serving在线推理服务(2)

《云原生机密计算最佳实践白皮书》——07解决方案——Intel Confidential Computing Zoo: Intel机密计算开源解决方案——部署TensorFlow Serving在线推理服务(1) https://developer.aliyun.com/article/1230820?groupCode=aliyun_linux



步骤一:部署客户端

本实践运行的环境信息参考:

• 规格:加密内存≥8G

• 镜像: Ubuntu20.04

• 公网IP

• 安装SGX软件栈

1、环境配置

安装所需的mesa-libGL软件包。

sudo pip3 install --upgrade pip 
sudo pip install multidict
sudo yum install mesa-libGL

2、下载软件包

下载本实践所用的TensorFlow Serving脚本代码并安装所需的argparse、aiohttp、tensorflflow等软件包。

git clone https://github.com/intel/confifidential-computing-zoo.git
cd confifidential-computing-zoo/cczoo/tensorflflow-serving-cluster/ tensorflflow-serving/docker
/client/
pip3 install -r ./requirements.txt

3、下载模型

./download_model.sh

下载训练好的模型文件将会存放在创建的 models/resnet50-v15-fp32 目录下。

4、模型格式转换

为了兼容TensorFlow Serving,需要对训练好的模型文件进行格式转换。

python3 ./model_graph_to_saved_model.py --import_path `pwd -P`/models/res
net50-v15-fp32/resnet50-v15-fp32.pb --export_dir `pwd -P`/models/resnet50-v15-fp32 
--model_version 1 --inputs input --outputs predict

转换好的模型文件将会存放在models/resnet50-v15-fp32/1/saved_model.pb。

5、创建gRPC TLS证书

本实践选择 gRPC TLS 建立客户端和TensorFlow Serving之间的通信连接,并设置 TensorFlow Serving域名来创建单向 TLS Keys 和证书,用来建立安全通信通道。该脚本将会创建 ssl_confifigure 文件夹,里面包含server和client相应的证书。

service_domain_name=grpc.tf-serving.service.com
client_domain_name=client.tf-serving.service.com
./generate_twoway_ssl_confifig.sh ${service_domain_name} ${client_domain_name}

6、创建加密模型

mkdir plaintext/
mv models/resnet50-v15-fp32/1/saved_model.pb plaintext/
LD_LIBRARY_PATH=./libs ./gramine-sgx-pf-crypt encrypt -w fifiles/wrap-key -i plaintext/saved_
model.pb -o models/resnet50-v15-fp32/1/saved_model.pb

7、启动密钥验证服务。

本实践使用Gramine提供的secret_prov_server_dcap作为远端SGX Enclave Quote认证服务,底层依赖调用SGX DCAP提供的Quote相关的认证库,该认证服务会向阿里云PCCS获取Quote认证相关的数据,比如TCB相

关信息以及CRL信息等。

SGX Enclave Quote验证成功后,会将当前目录下存放的密钥fifiles/wrap-key发送到远端应用。这里远端应用为vSGX环境中的Gramine,Gramine拿到wrap-key中的密钥后,便会对加密的模型和TLS配置文件进行解密。

• a. 切换到secrec_prov_server目录

./download_model.sh

• b. 使用密钥验证服务镜像

I) 下载密钥验证服务镜像

sudo docker pull intelcczoo/tensorflflow_serving:anolis_secret_prov_server_latest

II) 根据脚本编译镜像

sudo ./build_secret_prov_image.sh

• c. 获取secret_prov_server镜像ID

sudo docker images

• d. 启动密钥验证服务

sudo ./run_secret_prov.sh -i secret_prov_image_id -a pccs.service.com:ip_addr

服务启动后便会在后台运行等待远程认证访问。当接收到远端认证后,认证通过会将密钥发送回远端。

• e. 查看secret_prov_server容器IP地址

sudo docker ps -a #查看secret_prov_server镜像ID
sudo docker inspect -f '{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' <secret_prov_
server_container_id> 
#<secret_prov_server_container_id>需修改为实际的secret_prov_container_id



《云原生机密计算最佳实践白皮书》——07解决方案——Intel Confidential Computing Zoo: Intel机密计算开源解决方案——部署TensorFlow Serving在线推理服务(3) https://developer.aliyun.com/article/1230817?groupCode=aliyun_linux

相关实践学习
CentOS 7迁移Anolis OS 7
龙蜥操作系统Anolis OS的体验。Anolis OS 7生态上和依赖管理上保持跟CentOS 7.x兼容,一键式迁移脚本centos2anolis.py。本文为您介绍如何通过AOMS迁移工具实现CentOS 7.x到Anolis OS 7的迁移。
相关文章
|
3月前
|
开发者 算法 虚拟化
惊爆!Uno Platform 调试与性能分析终极攻略,从工具运用到代码优化,带你攻克开发难题成就完美应用
【8月更文挑战第31天】在 Uno Platform 中,调试可通过 Visual Studio 设置断点和逐步执行代码实现,同时浏览器开发者工具有助于 Web 版本调试。性能分析则利用 Visual Studio 的性能分析器检查 CPU 和内存使用情况,还可通过记录时间戳进行简单分析。优化性能涉及代码逻辑优化、资源管理和用户界面简化,综合利用平台提供的工具和技术,确保应用高效稳定运行。
84 0
|
3月前
|
前端开发 开发者 设计模式
揭秘Uno Platform状态管理之道:INotifyPropertyChanged、依赖注入、MVVM大对决,帮你找到最佳策略!
【8月更文挑战第31天】本文对比分析了 Uno Platform 中的关键状态管理策略,包括内置的 INotifyPropertyChanged、依赖注入及 MVVM 框架。INotifyPropertyChanged 方案简单易用,适合小型项目;依赖注入则更灵活,支持状态共享与持久化,适用于复杂场景;MVVM 框架通过分离视图、视图模型和模型,使状态管理更清晰,适合大型项目。开发者可根据项目需求和技术栈选择合适的状态管理方案,以实现高效管理。
45 0
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
TensorFlow Serving 部署指南超赞!让机器学习模型上线不再困难,轻松开启高效服务之旅!
【8月更文挑战第31天】TensorFlow Serving是一款高性能开源服务系统,专为部署机器学习模型设计。本文通过代码示例详细介绍其部署流程:从安装TensorFlow Serving、训练模型到配置模型服务器与使用gRPC客户端调用模型,展示了一站式模型上线解决方案,使过程变得简单高效。借助该工具,你可以轻松实现模型的实际应用。
57 0
|
4月前
|
TensorFlow 算法框架/工具 C++
构建NLP 开发问题之如何将模型导出为 ONNX、TensorRT 或 Tensorflow 格式以便部署
构建NLP 开发问题之如何将模型导出为 ONNX、TensorRT 或 Tensorflow 格式以便部署
|
6月前
|
TensorFlow 算法框架/工具 数据安全/隐私保护
如何在云服务器使用docker快速部署jupyter web服务器(Nginx+docker+jupyter+tensorflow)
如何在云服务器使用docker快速部署jupyter web服务器(Nginx+docker+jupyter+tensorflow)
227 0
|
11天前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####
|
13天前
|
运维 Kubernetes Cloud Native
云原生技术:容器化与微服务架构的完美结合
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术以其灵活性和高效性成为企业的新宠。本文将深入探讨云原生的核心概念,包括容器化技术和微服务架构,以及它们如何共同推动现代应用的发展。我们将通过实际代码示例,展示如何在Kubernetes集群上部署一个简单的微服务,揭示云原生技术的强大能力和未来潜力。
|
14天前
|
消息中间件 存储 Cloud Native
云原生架构下的数据一致性挑战与应对策略####
本文探讨了在云原生环境中,面对微服务架构的广泛应用,数据一致性问题成为系统设计的核心挑战之一。通过分析云原生环境的特点,阐述了数据不一致性的常见场景及其对业务的影响,并深入讨论了解决这些问题的策略,包括采用分布式事务、事件驱动架构、补偿机制以及利用云平台提供的托管服务等。文章旨在为开发者提供一套系统性的解决方案框架,以应对在动态、分布式的云原生应用中保持数据一致性的复杂性。 ####
|
8天前
|
Cloud Native 云计算 Docker
云原生技术的崛起:从容器化到微服务架构
云原生技术的崛起:从容器化到微服务架构
|
10天前
|
Cloud Native 安全 API
云原生架构下的微服务治理策略与实践####
—透过云原生的棱镜,探索微服务架构下的挑战与应对之道 本文旨在探讨云原生环境下,微服务架构所面临的关键挑战及有效的治理策略。随着云计算技术的深入发展,越来越多的企业选择采用云原生架构来构建和部署其应用程序,以期获得更高的灵活性、可扩展性和效率。然而,微服务架构的复杂性也带来了服务发现、负载均衡、故障恢复等一系列治理难题。本文将深入分析这些问题,并提出一套基于云原生技术栈的微服务治理框架,包括服务网格的应用、API网关的集成、以及动态配置管理等关键方面,旨在为企业实现高效、稳定的微服务架构提供参考路径。 ####
35 5
下一篇
无影云桌面