带你读《企业级云原生白皮书项目实战》——5.3.2 Flink任务开发相关(4)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 带你读《企业级云原生白皮书项目实战》——5.3.2 Flink任务开发相关(4)

《企业级云原生白皮书项目实战》——第五章 大数据——5.3 实时计算Flink版——5.3.2 Flink任务开发相关(3) https://developer.aliyun.com/article/1228384?groupCode=supportservice


2.添加连接器和库的依赖

大多数应用程序的运行需要特定的连接器或库,例如Kafka、Cassandra等连接器。这些连接器不是Flink核心依赖项的一部分,必须作为额外依赖项添加到应用程序中。

下述代码是添加Kafka连接器依赖项的示例(Maven语法):

<dependency>
 <groupId>org.apache.flflink</groupId>
 <artifactId>flflink-connector-kafka_2.11</artifactId>
 <version>1.12.3</version>
</dependency>

我们建议将应用程序代码和它所有的依赖以jar-with-dependencies 的形式打包到一个application jar中。这个应用程序jar包可以被提交到已经存在的Flink集群上去,或者被加入到Flink应用程序的容器镜像中去。

从Maven作业模版(见下文Maven作业模版部分)创建的项目,通过mvn clean package命令会自动把依赖打到应用程序的jar包中去。对于没有使用模版进行配置的情况,建议使用Maven Shade Plugin (配置如附录所示) 来构建包含依赖的jar包。

重要提示:对于Maven(和其他构建工具)来说,要将依赖项正确打包到应用程序jar中,这些应用程序依赖项的scope必须指定为"compile"(与核心依赖项不同,核心依赖项的scope必须指定为"provided")。

注意事项

Scala版本

Scala的不同版本(2.11,2.12等)相互之间是不兼容的。因此,Scala 2.11对应的Flink版本不能用于使用Scala 2.12的应用程序。

所有依赖(或传递依赖)于Scala的Flink依赖项都以构建它们的Scala版本作为后缀,例如flflink-streaming-scala_2.11。

只使用Java进行开发时可以选择任何Scala版本,使用Scala开发时需要选择与其应用程序的Scala版本匹配的Flink依赖版本。

注:2.12.8之后的Scala版本与之前的2.12.x版本不兼容,因此Flink项目无法将其2.12.x版本升级到2.12.8之后的版本。用户可以在本地自己编译对应Scala版本的Flink。为了使其能够正常工作,需要添加-Djapicmp.skip以在构建时跳过二进制兼容性检查。

Hadoop依赖

一般的规则: 永远不要将Hadoop相关依赖直接添加到应用程序中. (唯一的例外是将现有的Hadoop输入/输出Format与Flink的Hadoop兼容包一起使用时)

如果希望将Flink与Hadoop结合使用,则需要包含Hadoop依赖的Flink启动项,而不是将Hadoop添加为应用程序依赖项。Flink将使用HADOOP_CLASSPATH环境变量指定的Hadoop依赖项,可通过以下方式进行设置:

export HADOOP_CLASSPATH=`hadoop classpath`

这种设计有两个主要原因:

•一些与Hadoop的交互可能发生在Flink的核心模块中,并且在用户应用程序启动之前,例如为检查点设置HDFS、通过Hadoop的Kerberos令牌进行身份验证,或者在YARN上进行部署等。

•Flink的反向类加载机制从核心依赖项中隐藏了许多可传递的依赖项。这不仅适用于Flink自己的核心依赖项,而且适用于Hadoop的依赖项。这样,应用程序就可以使用相同依赖项的不同版本,而不会发生依赖项冲突(相信我们,这是一件大事,因为Hadoop依赖树非常庞大。)

如果在IDE内部的测试或开发过程中需要Hadoop依赖项(例如HDFS访问),请将这些依赖项的scope配置为test 或则 provided。

Transform table connector/format resources #

Flink使用Java的Service Provider Interfaces (SPI) 机制通过特定标识符加载table的connector/format工厂。由于每个table的connector/format的名为org.apache.flflink.table.factories.Factory的SPI资源文件位于同一目录:META-INF/services下,因此在构建使用多个table connector/format的项目的uber jar时,这些资源文件将相互覆盖,这将导致Flink无法正确加载工厂类。


《企业级云原生白皮书项目实战》——第五章 大数据——5.3 实时计算Flink版——5.3.2 Flink任务开发相关(5) https://developer.aliyun.com/article/1228379?groupCode=supportservice

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
3月前
|
Cloud Native 安全 大数据
云原生与大数据
【8月更文挑战第27天】云原生与大数据
60 5
|
15天前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
679 10
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
3月前
|
SQL 消息中间件 Kafka
实时计算 Flink版产品使用问题之如何在EMR-Flink的Flink SOL中针对source表单独设置并行度
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6天前
|
存储 Cloud Native 块存储
EBS深度解析:云原生时代企业级块存储
企业上云的策略,从 Cloud-Hosting 转向 Serverless 架构。块存储作为企业应用上云的核心存储产品,将通过 Serverless 化来加速新的计算范式全面落地。在本话题中,我们将会介绍阿里云块存储企业级能力的创新,深入解析背后的技术细节,分享对未来趋势的判断。
|
12天前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
zdl
|
3天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
19 0
|
28天前
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
66 1
|
1月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
2月前
|
存储 运维 监控
阿里云实时计算Flink版的评测
阿里云实时计算Flink版的评测
74 15