AAAI 2023 | 打破NAS瓶颈,新方法AIO-P跨任务预测架构性能

本文涉及的产品
文件存储 NAS,50GB 3个月
简介: AAAI 2023 | 打破NAS瓶颈,新方法AIO-P跨任务预测架构性能


海思加拿大研究院和阿尔伯塔大学联合推出了一个基于预训练和知识注入的神经网络性能预测框架。

神经网络的性能评估 (精度、召回率、PSNR 等) 需要大量的资源和时间,是神经网络结构搜索(NAS)的主要瓶颈。早期的 NAS 方法需要大量的资源来从零训练每一个搜索到的新结构。近几年来,网络性能预测器作为一种高效的性能评估方法正在引起更多关注。


然而,当前的预测器在使用范围上受限,因为它们只能建模来自特定搜索空间的网络结构,并且只能预测新结构在特定任务上的性能。例如,训练样本只包含分类网络以及它们的精度,这样训练出来的预测器只能用于评估新网络结构在图像分类任务上的性能


为了打破这一边界,使预测器能够预测某一网络结构在多种任务上的性能,跨任务跨数据泛化能力,华海思加拿大研究院和阿尔伯塔大学联合推出了一个基于预训练和知识注入的神经网络性能预测框架。该框架可快速评估不同结构和种类的网络在分类、检测、分割等多种不同类型 CV 任务上的性能,以用于神经网络结构搜索。研究论文已被 AAAI 2023 接收。




AIO-P(All-in-One Predictors)方法旨在将神经预测器的范围扩展到分类之外的计算机视觉任务。AIO-P 利用 K-Adapter 技术将任务相关的知识注入预测器模型,同时设计了一个基于 FLOPs(浮点操作数)的标签缩放机制来适应不同的性能指标和分布。AIO-P 使用了一种独特的伪标记方案来训练 K-Adapters,仅需几分钟即可生成新的训练样本。实验结果表明,AIO-P 展示出了强大的性能预测能力,在几个计算机视觉任务上都取得了出色的 MAE 和 SRCC 结果。此外,AIO-P 可以直接迁移并预测从未见过的网络结构的性能,可以与 NAS 配合,在保证性能不降低的前提下优化现有网络的计算量。


方法介绍


AIO-P 是一种可泛化于多任务的通用网络性能预测器。AIO-P 通过预测器预训练和特定领域知识注入实现了跨任务和跨搜索空间的性能预测能力。AIO-P 利用 K-Adapter 技术将任务相关的知识注入预测器,同时依赖于通用的计算图(CG)格式表示一个网络结构,最终使其能够支持来自不同搜索空间和任务的网络,如下图 1 所示。


图 1. AIO-P 是如何表示用于不同任务的网路结构的

此外,伪标记机制的运用使 AIO-P 能够快速生成新的训练样本用以训练 K-Adapters。为了弥合不同任务上性能度量范围之间的差距,AIO-P 提出了一种基于 FLOPs 的标签缩放方法,实现了跨任务性能建模。广泛的实验结果表明,AIO-P 能够在各种不同的 CV 任务上进行准确的性能预测,如姿态估计和分割,无需训练样本或仅需少量微调。此外,AIO-P 可以正确地对从未见过的网络结构进行性能排序,与搜索算法结合后用于优化华为面部识别网络,保持其性能不变并将 FLOPs 降低超过 13.5%。该论文已被 AAAI-23 接收并且代码已经在 GitHub 上开源。


计算机视觉网络通常由执行特征提取的 “主干” 和使用提取到的特征进行预测的 “头部” 组成。“主干” 的结构通常是基于某一种已知的网络结构设计的 (ResNet, Inception, MobileNet, ViT, UNet),而 “头部” 是针对给定任务,如分类、姿态估计、分割等而设计的。传统的 NAS 方案会根据 “主干” 的结构手动定制搜索空间,比如已知 “主干” 是 MobileNetV3,那么搜索空间可能包含 MBConv Block 数目,每个 MBConv 的参数 (kernel size, expansion),通道数等。然而这种定制的搜索空间不具备通用性,假如有另一个 “主干” 是基于 ResNet 设计的,则无法通过现有的 NAS 框架优化它,而是需要重新设计搜索空间。


为了解决这一问题,AIO-P 选择了从计算图层面来表示不同的网络结构,实现了对任何网络结构的统一表示。具体如图 2 所示,计算图格式允许 AIO-P 将头部和主干编码在一起来表示整网结构。这也使得 AIO-P 可以预测来自不同搜索空间(如 MobileNets 和 ResNets)的网络在各种任务上的性能。


图 2. MobileNetV3 中的 Squeeze-and-Excite 模块在计算图层面的表示


AIO-P 中提出的预测器结构从单个 GNN 回归模型开始(图 3,绿色块),它可以预测图像分类网络的性能。为了在它的基础上加入其他 CV 任务的知识,例如检测或分割,该研究将一个 K-Adapter(图 3,橙色块)附加到原始回归模型上。K-Adapter 在新任务的样本上进行训练,而原模型权重则被冻结。因此,该研究单独训练多个 K-Adapter(图 4)来加入来自多个任务的知识。


图 3. 拥有一个 K-Adapter 的 AIO-P 预测器


图 4. 拥有多个 K-Adapter 的 AIO-P 预测器


为了进一步降低训练每个 K-Adapter 的开销,该研究提出了一种巧妙的伪标签技术。这一技术使用 Latent 采样的方案来训练能共享于不同任务间的 “头部” 模型。共享头部训练之后可以与搜索空间中的任何网络主干配对,并在 10-15 分钟内进行微调以生成伪标签(图 5)。


图 5. 训练能共享于不同任务间的 “头部” 模型


经实验证明,使用共享头部获得的伪标签与通过从零开始训练一个网络一天或更长时间获得的实际性能呈正相关,有时排序相关度系数超过 0.5 (Spearman correlation)。



除此之外,不同的任务会有不同的性能指标。这些性能指标通常有自己特定的分布区间,例如,使用了某一特定主干的分类网络在 ImageNet 上分类准确率可能约为 75%,而在 MS-COCO 物体检测任务上的 mAP 可能为 30-35%。为了考虑这些不同的区间,该研究基于标准化理念提出了一种从正态分布中理解网络性能的方法。通俗的说,如果预测值为 0,则该网络性能为平均值;如果 > 0,则为较优网络;<0 对应于较差性能,无论任务、数据集或指标,如下图 6 所示。


图 6. 如何标准化网络性能


网络的 FLOPs 与模型大小,输入数据相关,并且通常与性能呈正相关趋势。该研究使用 FLOPs 转换来增强 AIO-P 从中学习的标签。



实验及结果


该研究首先在人体姿态估计和物体检测任务上上训练 AIO-P,然后用它预测多种任务上网络结构的性能,包括姿态估计(LSP 和 MPII),检测(OD),实例分割(IS),语义分割(SS)和全景分割(PS)。即使在零样本直接迁移的情况下,使用 AIO-P 对来自于 Once-for-All(OFA)搜索空间(ProxylessNAS,MobileNetV3 和 ResNet-50)的网络在这些任务上的性能进行预测,最终预测结果达到了低于 1.0%的 MAE 和超过 0.5 的排序相关度。



此外,该研究也使用 AIO-P 预测了 TensorFlow-Slim 开源模型库中的网络的性能(例如 DeepLab 语义分割模型,ResNets,Inception nets,MobileNets 和 EfficientNets),这些网络结构可能未曾在 AIO-P 的训练样本中出现。



AIO-P 通过利用 FLOPs 转换,在 3 个 DeepLab 语义分割模型库上能够实现几乎完美的 SRCC,同时在所有 4 个分类模型库上获得正的 SRCC,以及在 EfficientNet 模型上实现 SRCC=1.0。



最后,AIO-P 的核心动机是能够将其与搜索算法配对,并将其用于优化任意网络结构,可以是独立的,不属于任何搜索空间或已知模型库的结构,甚至可以是一个用于从未训练过的任务的结构。该研究使用 AIO-P 和随机变异搜索算法来优化华为手机上使用的人脸识别(FR)模型,结果显示 AIO-P 能够在降低模型计算量 FLOPs 超过 13.5%的同时保持性能(精度(Pr)和召回率(Rc))。


感兴趣的读者可以阅读论文原文,了解更多研究细节。

相关实践学习
基于ECS和NAS搭建个人网盘
本场景主要介绍如何基于ECS和NAS快速搭建个人网盘。
阿里云文件存储 NAS 使用教程
阿里云文件存储(Network Attached Storage,简称NAS)是面向阿里云ECS实例、HPC和Docker的文件存储服务,提供标准的文件访问协议,用户无需对现有应用做任何修改,即可使用具备无限容量及性能扩展、单一命名空间、多共享、高可靠和高可用等特性的分布式文件系统。 产品详情:https://www.aliyun.com/product/nas
相关文章
|
5月前
|
存储 缓存 Cloud Native
MPP架构数据仓库使用问题之ADB PG云原生版本的扩缩容性能怎么样
MPP架构数据仓库使用问题之ADB PG云原生版本的扩缩容性能怎么样
MPP架构数据仓库使用问题之ADB PG云原生版本的扩缩容性能怎么样
|
30天前
|
机器学习/深度学习 编解码 人工智能
超越Transformer,全面升级!MIT等华人团队发布通用时序TimeMixer++架构,8项任务全面领先
一支由麻省理工学院、香港科技大学(广州)、浙江大学和格里菲斯大学的华人研究团队,开发了名为TimeMixer++的时间序列分析模型。该模型在8项任务中超越现有技术,通过多尺度时间图像转换、双轴注意力机制和多尺度多分辨率混合等技术,实现了性能的显著提升。论文已发布于arXiv。
149 83
|
22天前
|
机器学习/深度学习 算法 数据可视化
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
本文探讨了在量化交易中结合时序特征和静态特征的混合建模方法。通过整合堆叠稀疏降噪自编码器(SSDA)和基于LSTM的自编码器(LSTM-AE),构建了一个能够全面捕捉市场动态特性的交易系统。SSDA通过降噪技术提取股票数据的鲁棒表示,LSTM-AE则专注于捕捉市场的时序依赖关系。系统采用A2C算法进行强化学习,通过多维度的奖励计算机制,实现了在可接受的风险水平下最大化收益的目标。实验结果显示,该系统在不同波动特征的股票上表现出差异化的适应能力,特别是在存在明确市场趋势的情况下,决策准确性较高。
59 5
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
|
2月前
|
运维 负载均衡 Shell
控制员工上网软件:高可用架构的构建方法
本文介绍了构建控制员工上网软件的高可用架构的方法,包括负载均衡、数据备份与恢复、故障检测与自动切换等关键机制,以确保企业网络管理系统的稳定运行。通过具体代码示例,展示了如何实现这些机制。
132 63
|
30天前
|
弹性计算 运维 Serverless
卓越效能,极简运维,体验Serverless高可用架构,完成任务可领取转轮日历!
卓越效能,极简运维,体验Serverless高可用架构,完成任务可领取转轮日历!
|
2月前
|
机器学习/深度学习 自然语言处理 物联网
NeurIPS 2024 Oral:小参数,大作为!揭秘非对称 LoRA 架构的高效性能
近期,一篇题为《\model~: 非对称LoRA架构实现高效微调》的论文被NeurIPS 2024接收为口头报告,该研究提出了一种创新的非对称LoRA架构,旨在解决大型语言模型(LLMs)在保持高性能的同时提高训练和部署效率的问题。通过引入共享A矩阵和多个B矩阵,\model~不仅提高了参数效率,还在多个数据集上展示了超越现有PEFT方法的性能,尤其是在多任务域和复杂数据集上的表现尤为突出。此架构还有效减少了训练能耗和延迟,为LLMs的高效应用提供了新思路。
40 4
|
2月前
|
人工智能 Cloud Native 算法
|
4月前
|
设计模式 Java 关系型数据库
【Java笔记+踩坑汇总】Java基础+JavaWeb+SSM+SpringBoot+SpringCloud+瑞吉外卖/谷粒商城/学成在线+设计模式+面试题汇总+性能调优/架构设计+源码解析
本文是“Java学习路线”专栏的导航文章,目标是为Java初学者和初中高级工程师提供一套完整的Java学习路线。
506 37
|
3月前
|
前端开发 JavaScript
掌握微前端架构:构建现代Web应用的新方法
本文介绍了微前端架构的概念及其在现代Web应用开发中的优势与实施方法。微前端架构通过将应用拆分成独立模块,提升了开发效率和灵活性。其核心优势包括技术栈灵活性、独立部署、团队协作及易于维护。文章详细阐述了定义边界、选择框架、管理状态和通信等关键步骤,并讨论了状态同步、样式隔离及安全性等挑战。微前端架构有望成为未来Web开发的重要趋势。
|
3月前
|
安全 数据安全/隐私保护 UED
优化用户体验:前后端分离架构下Python WebSocket实时通信的性能考量
在当今互联网技术的迅猛发展中,前后端分离架构已然成为主流趋势,它不仅提升了开发效率,也优化了用户体验。然而,在这种架构模式下,如何实现高效的实时通信,特别是利用WebSocket协议,成为了提升用户体验的关键。本文将探讨在前后端分离架构中,使用Python进行WebSocket实时通信时的性能考量,以及与传统轮询方式的比较。
84 2

热门文章

最新文章