Python 数学运算库Numpy入门基础(一)创建数组

简介: Python 数学运算库Numpy入门基础(一)创建数组

安装

c:\> pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple



官方指南


1. >>> import numpy
2. >>> help(numpy)
3. Squeezed text(75939 lines).
4. >>>



内部help文档将近7.6万行,择取部分以习之,算是管中窥豹了——

 



入门基础(一)


创建数组


1- np.array()

参数众多,初学时只要关注基本用法。

array(...)
    array(object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0,
          like=None)
    Create an array.
    Parameters
    ----------
    object : array_like
        An array, any object exposing the array interface, an object whose
        __array__ method returns an array, or any (nested) sequence.
    dtype : data-type, optional
        The desired data-type for the array.  If not given, then the type will
        be determined as the minimum type required to hold the objects in the
        sequence.
    copy : bool, optional
        If true (default), then the object is copied.  Otherwise, a copy will
        only be made if __array__ returns a copy, if obj is a nested sequence,
        or if a copy is needed to satisfy any of the other requirements
        (`dtype`, `order`, etc.).
    order : {'K', 'A', 'C', 'F'}, optional
        Specify the memory layout of the array. If object is not an array, the
        newly created array will be in C order (row major) unless 'F' is
        specified, in which case it will be in Fortran order (column major).
        If object is an array the following holds.
        ===== ========= ===================================================
        order  no copy                     copy=True
        ===== ========= ===================================================
        'K'   unchanged F & C order preserved, otherwise most similar order
        'A'   unchanged F order if input is F and not C, otherwise C order
        'C'   C order   C order
        'F'   F order   F order
        ===== ========= ===================================================
        When ``copy=False`` and a copy is made for other reasons, the result is
        the same as if ``copy=True``, with some exceptions for 'A', see the
        Notes section. The default order is 'K'.
    subok : bool, optional
        If True, then sub-classes will be passed-through, otherwise
        the returned array will be forced to be a base-class array (default).
    ndmin : int, optional
        Specifies the minimum number of dimensions that the resulting
        array should have.  Ones will be pre-pended to the shape as
        needed to meet this requirement.
    like : array_like
        Reference object to allow the creation of arrays which are not
        NumPy arrays. If an array-like passed in as ``like`` supports
        the ``__array_function__`` protocol, the result will be defined
        by it. In this case, it ensures the creation of an array object
        compatible with that passed in via this argument.
        .. versionadded:: 1.20.0


元组、列表转换

>>> import numpy as np
>>> np.array((1,2,3))
array([1, 2, 3])
>>> np.array([3,2,3])
array([3, 2, 3])
>>> np.array([[3,2,3],[4,5,6]])
array([[3, 2, 3],
       [4, 5, 6]])



内置函数 range()

>>> import numpy as np
>>> np.array(range(5))
array([0, 1, 2, 3, 4])
>>> np.array(range(2,11,2))
array([ 2,  4,  6,  8, 10])
>>> np.array([range(1,5),range(5,9)])
array([[1, 2, 3, 4],
       [5, 6, 7, 8]])


数组副本copy,开辟一块新内存复制原数组

>>> import numpy as np
>>> a = np.array([1,2,3])
>>> b = np.array(a)
>>> b
array([1, 2, 3])
>>> a[0] = 3
>>> a,b
(array([3, 2, 3]), array([1, 2, 3]))


主要参数:


dtype=     数组元素的数据类型,可选

copy=      对象是否需要复制,可选

order=     创建数组的样式,C为行方向,F为列方向,A为任意方向(默认)

subok=    默认返回一个与基类类型一致的数组

ndmin=    指定生成数组的最小维度



>>> import numpy as np
>>> np.array([[1, 2, 3, 4]], dtype=float)
array([[1., 2., 3., 4.]])
>>> np.array([[1, 2], [3, 4]], dtype=complex)
array([[1.+0.j, 2.+0.j],
       [3.+0.j, 4.+0.j]])
>>> np.array([[1, 2, 3, 4]], dtype=np.int64)
array([[1, 2, 3, 4]], dtype=int64)
>>> np.array({1, 2, 3, 4})
array({1, 2, 3, 4}, dtype=object)
>>> np.array({1, 2, 3, 4}).dtype
dtype('O') #集合只能作一个整体,大写字母O,即object
>>> np.array([[1, 2, 3, 4]], dtype=np.int64).dtype
dtype('int64')
>>> np.array([[1, 2], [3, 4, 5]])
array([list([1, 2]), list([3, 4, 5])], dtype=object)
>>> np.array([[1, 2], [3, 4, 5]]).dtype
dtype('O')
>>> 
>>> np.array([1, 2, 3, 4, 5], ndmin =  1)
array([1, 2, 3, 4, 5])
>>> np.array([1, 2, 3, 4, 5], ndmin =  2)
array([[1, 2, 3, 4, 5]])
>>> np.array([1, 2, 3, 4, 5], ndmin =  3)
array([[[1, 2, 3, 4, 5]]])
>>>



2.1- 基本属性 .shape  .ndim .dtype .size等

>>> a = np.array(range(2,11,2))
>>> b = np.array([range(1,5),range(5,9)])
>>> a.shape
(5,)
>>> b.shape
(2, 4)
>>> a.ndim, b.ndim
(1, 2)
>>> np.array(1)
array(1)
>>> np.array(1).ndim
0 #常数为0维
>>> a.dtype.name, b.dtype.name
('int32', 'int32')
>>> a.size, b.size
(5, 8)
>>> type(a), type(b)
(<class 'numpy.ndarray'>, <class 'numpy.ndarray'>)
>>> a
array([ 2,  4,  6,  8, 10])
>>> b
array([[1, 2, 3, 4],
       [5, 6, 7, 8]])
>>> print(a)
[ 2  4  6  8 10]
>>> print(b)
[[1 2 3 4]
 [5 6 7 8]]


.ndim      秩,即轴的数量或维度的数量

.shape    数组的维度,对于矩阵,n 行 m 列

.size       数组元素的总个数,相当于 .shape 中 n*m 的值

.dtype     对象的元素类型

.itemsize     对象中每个元素的大小,以字节为单位

.flags      对象的内存信息

.real       元素的实部

.imag     元素的虚部

.data      包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。  



2.2- 与属性同名的方法

除.itemsize .flags .data外者有同名方法,其它有方法的参数都为ndarray,dtype()除外。

>>> a = np.array([*range(5)],dtype=complex)
>>> np.ndim(a)
1
>>> np.shape(a)
(5,)
>>> np.size(a)
5
>>> np.real(a)
array([0., 1., 2., 3., 4.])
>>> np.imag(a)
array([0., 0., 0., 0., 0.])
>>> np.dtype(int)
dtype('int32')
>>> np.dtype(complex)
dtype('complex128')
>>> np.dtype(float)
dtype('float64')
>>> a.itemsize
16
>>> a.flags
  C_CONTIGUOUS : True
  F_CONTIGUOUS : True
  OWNDATA : True
  WRITEABLE : True
  ALIGNED : True
  WRITEBACKIFCOPY : False
  UPDATEIFCOPY : False
>>> a.data
<memory at 0x0000000002D79DC0>



3- np.arange()

arange(...)
    arange([start,] stop[, step,], dtype=None, *, like=None)
    Return evenly spaced values within a given interval.
    Values are generated within the half-open interval ``[start, stop)``
    (in other words, the interval including `start` but excluding `stop`).
    For integer arguments the function is equivalent to the Python built-in
    `range` function, but returns an ndarray rather than a list.
    When using a non-integer step, such as 0.1, the results will often not
    be consistent.  It is better to use `numpy.linspace` for these cases.
    Parameters
    ----------
    start : integer or real, optional
        Start of interval.  The interval includes this value.  The default
        start value is 0.
    stop : integer or real
        End of interval.  The interval does not include this value, except
        in some cases where `step` is not an integer and floating point
        round-off affects the length of `out`.
    step : integer or real, optional
        Spacing between values.  For any output `out`, this is the distance
        between two adjacent values, ``out[i+1] - out[i]``.  The default
        step size is 1.  If `step` is specified as a position argument,
        `start` must also be given.
    dtype : dtype
        The type of the output array.  If `dtype` is not given, infer the data
        type from the other input arguments.
    like : array_like
        Reference object to allow the creation of arrays which are not
        NumPy arrays. If an array-like passed in as ``like`` supports
        the ``__array_function__`` protocol, the result will be defined
        by it. In this case, it ensures the creation of an array object
        compatible with that passed in via this argument.
        .. versionadded:: 1.20.0


np.arange() 与 np.array(range()) 类似,但前者允许用浮点数

>>> np.arange(12)
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
>>> np.arange(0,1.1,0.1)
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])
>>> np.arange(2,5,0.3)
array([2. , 2.3, 2.6, 2.9, 3.2, 3.5, 3.8, 4.1, 4.4, 4.7])



4- np.reshape()

reshape(a, newshape, order='C')
    Gives a new shape to an array without changing its data.
    Parameters
    ----------
    a : array_like
        Array to be reshaped.
    newshape : int or tuple of ints
        The new shape should be compatible with the original shape. If
        an integer, then the result will be a 1-D array of that length.
        One shape dimension can be -1. In this case, the value is
        inferred from the length of the array and remaining dimensions.
    order : {'C', 'F', 'A'}, optional
        Read the elements of `a` using this index order, and place the
        elements into the reshaped array using this index order.  'C'
        means to read / write the elements using C-like index order,
        with the last axis index changing fastest, back to the first
        axis index changing slowest. 'F' means to read / write the
        elements using Fortran-like index order, with the first index
        changing fastest, and the last index changing slowest. Note that
        the 'C' and 'F' options take no account of the memory layout of
        the underlying array, and only refer to the order of indexing.
        'A' means to read / write the elements in Fortran-like index
        order if `a` is Fortran *contiguous* in memory, C-like order
        otherwise.
    Returns
    -------
    reshaped_array : ndarray
        This will be a new view object if possible; otherwise, it will
        be a copy.  Note there is no guarantee of the *memory layout* (C- or
        Fortran- contiguous) of the returned array.
>>> a = np.arange(8)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7])
>>> np.reshape(a,(2,4))
array([[0, 1, 2, 3],
       [4, 5, 6, 7]])
>>> np.reshape(a,(4,2))
array([[0, 1],
       [2, 3],
       [4, 5],
       [6, 7]])
>>> np.reshape(a,(8,1))
array([[0],
       [1],
       [2],
       [3],
       [4],
       [5],
       [6],
       [7]])
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7])
>>> a.reshape(2,4)
array([[0, 1, 2, 3],
       [4, 5, 6, 7]])
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7])
>>> a.reshape(4,2)
array([[0, 1],
       [2, 3],
       [4, 5],
       [6, 7]])
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7])



5- 数据类型

dtype对应的类型除了内置的int,float,complex等,可以用 np.bool_, np.int8, np.uint64:


   bool_    布尔型数据类型(True 或者 False)

   int_    默认的整数类型(类似于 C 语言中的 long,int32 或 int64)

   intc    与 C 的 int 类型一样,一般是 int32 或 int 64

   intp    用于索引的整数类型(类似于 C 的 ssize_t,一般情况下仍然是 int32 或 int64)

   int8    字节(-128 to 127)

   int16    整数(-32768 to 32767)

   int32    整数(-2147483648 to 2147483647)

   int64    整数(-9223372036854775808 to 9223372036854775807)

   uint8    无符号整数(0 to 255)

   uint16    无符号整数(0 to 65535)

   uint32    无符号整数(0 to 4294967295)

   uint64    无符号整数(0 to 18446744073709551615)

   float_    float64 类型的简写

   float16    半精度浮点数,包括:1 个符号位,5 个指数位,10 个尾数位

   float32    单精度浮点数,包括:1 个符号位,8 个指数位,23 个尾数位

   float64    双精度浮点数,包括:1 个符号位,11 个指数位,52 个尾数位

   complex_    complex128 类型的简写,即 128 位复数

   complex64    复数,表示双 32 位浮点数(实数部分和虚数部分)

   complex128    复数,表示双 64 位浮点数(实数部分和虚数部分)




每个内建类型都有一个唯一定义它的字符代码:


   b    布尔型

   i    (有符号) 整型

   u    无符号整型 integer

   f    浮点型

   c    复数浮点型

   m    timedelta(时间间隔)

   M    datetime(日期时间)

   O    (Python) 对象

   S, a    (byte-)字符串

   U    Unicode

   V    原始数据 (void)

int8, int16, int32, int64 -- i1, i2, i4, i8
uint8,uint16,uint32,uint64 -- u1, u2, u4, u8
float16,float32,float64,float128 -- f2, f4, f8, f16
或: float32,float64,float128 -- f, d, g
complex64,complex128,complex256 -- c8,c16,c32
bool -- ?


>>> import numpy as np
>>> np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')])
dtype([('name', 'S20'), ('age', 'i1'), ('marks', '<f4')])
>>> import numpy as np
>>> student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')])
>>> student
dtype([('name', 'S20'), ('age', 'i1'), ('marks', '<f4')])
>>> np.array([('abc', 21, 50),('xyz', 18, 75)], dtype = student)
array([(b'abc', 21, 50.), (b'xyz', 18, 75.)],
      dtype=[('name', 'S20'), ('age', 'i1'), ('marks', '<f4')])
>>> a = np.array([('abc', 21, 50),('xyz', 18, 75)], dtype = student)
>>> print(a)
[(b'abc', 21, 50.) (b'xyz', 18, 75.)]




6- np.asarray()

asarray(...)
    asarray(a, dtype=None, order=None, *, like=None)
    Convert the input to an array.
    Parameters
    ----------
    a : array_like
        Input data, in any form that can be converted to an array.  This
        includes lists, lists of tuples, tuples, tuples of tuples, tuples
        of lists and ndarrays.
    dtype : data-type, optional
        By default, the data-type is inferred from the input data.
    order : {'C', 'F', 'A', 'K'}, optional
        Memory layout.  'A' and 'K' depend on the order of input array a.
        'C' row-major (C-style),
        'F' column-major (Fortran-style) memory representation.
        'A' (any) means 'F' if `a` is Fortran contiguous, 'C' otherwise
        'K' (keep) preserve input order
        Defaults to 'C'.
    like : array_like
        Reference object to allow the creation of arrays which are not
        NumPy arrays. If an array-like passed in as ``like`` supports
        the ``__array_function__`` protocol, the result will be defined
        by it. In this case, it ensures the creation of an array object
        compatible with that passed in via this argument.
        .. versionadded:: 1.20.0


>>> import numpy as np
>>> a = np.array([1,2,3])
>>> b = np.asarray(a)
>>> a,b
(array([1, 2, 3]), array([1, 2, 3]))
>>> a[0]=3
>>> a,b
(array([3, 2, 3]), array([3, 2, 3]))

注意 b=asarray(a)  与 b=array(a) 的区别,前者两数组指向同一内存地址。



7- np.fromiter()


fromiter(...)
    fromiter(iter, dtype, count=-1, *, like=None)
    Create a new 1-dimensional array from an iterable object.
    Parameters
    ----------
    iter : iterable object
        An iterable object providing data for the array.
    dtype : data-type
        The data-type of the returned array.
    count : int, optional
        The number of items to read from *iterable*.  The default is -1,
        which means all data is read.
    like : array_like
        Reference object to allow the creation of arrays which are not
        NumPy arrays. If an array-like passed in as ``like`` supports
        the ``__array_function__`` protocol, the result will be defined
        by it. In this case, it ensures the creation of an array object
        compatible with that passed in via this argument.
        .. versionadded:: 1.20.0
    Returns
    -------
    out : ndarray
        The output array.
    Notes
    -----
    Specify `count` to improve performance.  It allows ``fromiter`` to
    pre-allocate the output array, instead of resizing it on demand.
>>> import numpy as np
>>> np.fromiter(range(5),dtype=int)
array([0, 1, 2, 3, 4])
>>> np.fromiter(range(5),dtype=float)
array([0., 1., 2., 3., 4.])
>>> iterable = (x*x for x in range(5))
>>> np.fromiter(iterable, float)
array([ 0.,  1.,  4.,  9., 16.])
>>> np.fromiter({1,2,3,4}, float)
array([1., 2., 3., 4.])
>>> np.array({1,2,3,4})
array({1, 2, 3, 4}, dtype=object)
#注意:array()不能从集合中取出元素,只能作为一个整体
>>> np.fromiter('Hann Yang',dtype='S1')
array([b'H', b'a', b'n', b'n', b' ', b'Y', b'a', b'n', b'g'], dtype='|S1')
>>> np.fromiter(b'Hann Yang',dtype=np.uint8)
array([ 72,  97, 110, 110,  32,  89,  97, 110, 103], dtype=uint8)
#注意:字节串b''与字符串str的区别




8- np.frombuffer()

流的形式读入转化成 ndarray 对象,还可以分批读入。

frombuffer(...)
    frombuffer(buffer, dtype=float, count=-1, offset=0, *, like=None)
    Interpret a buffer as a 1-dimensional array.
    Parameters
    ----------
    buffer : buffer_like
        An object that exposes the buffer interface.
    dtype : data-type, optional
        Data-type of the returned array; default: float.
    count : int, optional
        Number of items to read. ``-1`` means all data in the buffer.
    offset : int, optional
        Start reading the buffer from this offset (in bytes); default: 0.
    like : array_like
        Reference object to allow the creation of arrays which are not
        NumPy arrays. If an array-like passed in as ``like`` supports
        the ``__array_function__`` protocol, the result will be defined
        by it. In this case, it ensures the creation of an array object
        compatible with that passed in via this argument.
        .. versionadded:: 1.20.0
>>> np.frombuffer('Hann Yang',dtype='S1')
Traceback (most recent call last):
  File "<pyshell#68>", line 1, in <module>
    np.frombuffer('Hann Yang',dtype='S1')
TypeError: a bytes-like object is required, not 'str'
>>> np.frombuffer(b'Hann Yang',dtype='S1')
array([b'H', b'a', b'n', b'n', b' ', b'Y', b'a', b'n', b'g'], dtype='|S1')
>>> np.frombuffer(b'Hann Yang',dtype=int)
Traceback (most recent call last):
  File "<pyshell#70>", line 1, in <module>
    np.frombuffer(b'Hann Yang',dtype=int)
ValueError: buffer size must be a multiple of element size
>>> np.frombuffer(b'Hann Yang',dtype=np.uint8)
array([ 72,  97, 110, 110,  32,  89,  97, 110, 103], dtype=uint8)
>>> np.frombuffer(b'Hann Yang',dtype='S1')
array([b'H', b'a', b'n', b'n', b' ', b'Y', b'a', b'n', b'g'], dtype='|S1')
>>> np.frombuffer(b'Hann Yang',dtype=np.uint8)
array([ 72,  97, 110, 110,  32,  89,  97, 110, 103], dtype=uint8)
>>> np.frombuffer(b'Hann Yang',dtype=np.uint8,count=4)
array([ 72,  97, 110, 110], dtype=uint8)
>>> np.frombuffer(b'Hann Yang',dtype=np.uint8,count=4,offset=4)
array([ 32,  89,  97, 110], dtype=uint8)
>>> np.frombuffer(b'Hann Yang',dtype=np.uint8,count=-1,offset=8)
array([103], dtype=uint8)



9.1- np.linspace()

以等差数列创建数组

linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)
    Return evenly spaced numbers over a specified interval.
    Returns `num` evenly spaced samples, calculated over the
    interval [`start`, `stop`].
    The endpoint of the interval can optionally be excluded.
    .. versionchanged:: 1.16.0
        Non-scalar `start` and `stop` are now supported.
    .. versionchanged:: 1.20.0
        Values are rounded towards ``-inf`` instead of ``0`` when an
        integer ``dtype`` is specified. The old behavior can
        still be obtained with ``np.linspace(start, stop, num).astype(int)``
    Parameters
    ----------
    start : array_like
        The starting value of the sequence.
    stop : array_like
        The end value of the sequence, unless `endpoint` is set to False.
        In that case, the sequence consists of all but the last of ``num + 1``
        evenly spaced samples, so that `stop` is excluded.  Note that the step
        size changes when `endpoint` is False.
    num : int, optional
        Number of samples to generate. Default is 50. Must be non-negative.
    endpoint : bool, optional
        If True, `stop` is the last sample. Otherwise, it is not included.
        Default is True.
    retstep : bool, optional
        If True, return (`samples`, `step`), where `step` is the spacing
        between samples.
    dtype : dtype, optional
        The type of the output array.  If `dtype` is not given, the data type
        is inferred from `start` and `stop`. The inferred dtype will never be
        an integer; `float` is chosen even if the arguments would produce an
        array of integers.
        .. versionadded:: 1.9.0
    axis : int, optional
        The axis in the result to store the samples.  Relevant only if start
        or stop are array-like.  By default (0), the samples will be along a
        new axis inserted at the beginning. Use -1 to get an axis at the end.
        .. versionadded:: 1.16.0


创建区间可以是全开区间,也可以前开后闭区间。

>>> np.linspace(2.0, 3.0, num=5)
array([2.  , 2.25, 2.5 , 2.75, 3.  ])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
array([2. ,  2.2,  2.4,  2.6,  2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
(array([2.  ,  2.25,  2.5 ,  2.75,  3.  ]), 0.25)
>>> np.linspace(1, 1, 10, dtype=int)
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1])




9.2- np.logspace()

以对数数列创建数组

logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0)
    Return numbers spaced evenly on a log scale.
    In linear space, the sequence starts at ``base ** start``
    (`base` to the power of `start`) and ends with ``base ** stop``
    (see `endpoint` below).
    .. versionchanged:: 1.16.0
        Non-scalar `start` and `stop` are now supported.
    Parameters
    ----------
    start : array_like
        ``base ** start`` is the starting value of the sequence.
    stop : array_like
        ``base ** stop`` is the final value of the sequence, unless `endpoint`
        is False.  In that case, ``num + 1`` values are spaced over the
        interval in log-space, of which all but the last (a sequence of
        length `num`) are returned.
    num : integer, optional
        Number of samples to generate.  Default is 50.
    endpoint : boolean, optional
        If true, `stop` is the last sample. Otherwise, it is not included.
        Default is True.
    base : array_like, optional
        The base of the log space. The step size between the elements in
        ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform.
        Default is 10.0.
    dtype : dtype
        The type of the output array.  If `dtype` is not given, the data type
        is inferred from `start` and `stop`. The inferred type will never be
        an integer; `float` is chosen even if the arguments would produce an
        array of integers.
    axis : int, optional
        The axis in the result to store the samples.  Relevant only if start
        or stop are array-like.  By default (0), the samples will be along a
        new axis inserted at the beginning. Use -1 to get an axis at the end.
        .. versionadded:: 1.16.0
>>> np.logspace(2.0, 3.0, num=4)
array([ 100.        ,  215.443469  ,  464.15888336, 1000.        ])
>>> np.logspace(2.0, 3.0, num=4, endpoint=False)
array([100.        ,  177.827941  ,  316.22776602,  562.34132519])
>>> np.logspace(2.0, 3.0, num=4, base=2.0)
array([4.        ,  5.0396842 ,  6.34960421,  8.        ])




9.3- np.geomspace()

geomspace(start, stop, num=50, endpoint=True, dtype=None, axis=0)
    Return numbers spaced evenly on a log scale (a geometric progression).
    This is similar to `logspace`, but with endpoints specified directly.
    Each output sample is a constant multiple of the previous.
    .. versionchanged:: 1.16.0
        Non-scalar `start` and `stop` are now supported.
    Parameters
    ----------
    start : array_like
        The starting value of the sequence.
    stop : array_like
        The final value of the sequence, unless `endpoint` is False.
        In that case, ``num + 1`` values are spaced over the
        interval in log-space, of which all but the last (a sequence of
        length `num`) are returned.
    num : integer, optional
        Number of samples to generate.  Default is 50.
    endpoint : boolean, optional
        If true, `stop` is the last sample. Otherwise, it is not included.
        Default is True.
    dtype : dtype
        The type of the output array.  If `dtype` is not given, the data type
        is inferred from `start` and `stop`. The inferred dtype will never be
        an integer; `float` is chosen even if the arguments would produce an
        array of integers.
    axis : int, optional
        The axis in the result to store the samples.  Relevant only if start
        or stop are array-like.  By default (0), the samples will be along a
        new axis inserted at the beginning. Use -1 to get an axis at the end.
        .. versionadded:: 1.16.0
>>> np.geomspace(1, 1000, num=4)
array([    1.,    10.,   100.,  1000.])
>>> np.geomspace(1, 1000, num=3, endpoint=False)
array([   1.,   10.,  100.])
>>> np.geomspace(1, 1000, num=4, endpoint=False)
array([   1.        ,    5.62341325,   31.6227766 ,  177.827941  ])
>>> np.geomspace(1, 256, num=9)
array([   1.,    2.,    4.,    8.,   16.,   32.,   64.,  128.,  256.])
#Note that the above may not produce exact integers:
>>> np.geomspace(1, 256, num=9, dtype=int)
array([  1,   2,   4,   7,  16,  32,  63, 127, 256])
>>> np.around(np.geomspace(1, 256, num=9)).astype(int)
array([  1,   2,   4,   8,  16,  32,  64, 128, 256])
#Negative, decreasing, and complex inputs are allowed:
>>> np.geomspace(1000, 1, num=4)
array([1000.,  100.,   10.,    1.])
>>> np.geomspace(-1000, -1, num=4)
array([-1000.,  -100.,   -10.,    -1.])
>>> np.geomspace(1j, 1000j, num=4)  # Straight line
array([0.   +1.j, 0.  +10.j, 0. +100.j, 0.+1000.j])
>>> np.geomspace(-1+0j, 1+0j, num=5)  # Circle
array([-1.00000000e+00+1.22464680e-16j, -7.07106781e-01+7.07106781e-01j,
            6.12323400e-17+1.00000000e+00j,  7.07106781e-01+7.07106781e-01j,
            1.00000000e+00+0.00000000e+00j])



10.1- 常量np.pi np.e np.nan np.inf 等

>>> np.pi
3.141592653589793
>>> np.e
2.718281828459045
>>> np.nan
nan
>>> np.inf
inf
>>> np.Inf
inf
>>> np.Infinity
inf
>>> np.PINF
inf
>>> np.NINF
-inf
>>> np.PZERO
0.0
>>> np.NZERO
-0.0

10.2- 常量数组 zeros() ones() empty()

>>> np.zeros((2,5))
array([[0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.]])
>>> np.zeros((2,5),dtype=int)
array([[0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0]])
>>> np.linspace(0, 0, 10, dtype=int).reshape((2,5))
array([[0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0]])
>>> 
>>> np.ones((3,4))
array([[1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.]])
>>> np.ones((3,4),dtype=int)
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])
>>> np.linspace(1, 1, 12, dtype=int).reshape((3,4))
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])
>>>
>>> np.linspace(1, 1, 12, dtype=int).reshape((3,4))*3
array([[3, 3, 3, 3],
       [3, 3, 3, 3],
       [3, 3, 3, 3]])
>>> np.linspace(1, 1, 12, dtype=int).reshape((3,4))*np.pi
array([[3.14159265, 3.14159265, 3.14159265, 3.14159265],
       [3.14159265, 3.14159265, 3.14159265, 3.14159265],
       [3.14159265, 3.14159265, 3.14159265, 3.14159265]])



10.3- 常量数组 zeros_like() ones_like() empty_like()

>>> arr = np.ones((3,4))
>>> np.zeros_like(arr)
array([[0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.]])

10.4- 单位矩阵 np.eye() 或 np.identity() 对角线为1,其余为0

>>> np.eye(4)
array([[1., 0., 0., 0.],
       [0., 1., 0., 0.],
       [0., 0., 1., 0.],
       [0., 0., 0., 1.]])
>>> np.identity(4, dtype=int)
array([[1, 0, 0, 0],
       [0, 1, 0, 0],
       [0, 0, 1, 0],
       [0, 0, 0, 1]])
目录
相关文章
|
1天前
|
开发者 Python
Python入门:8.Python中的函数
### 引言 在编写程序时,函数是一种强大的工具。它们可以将代码逻辑模块化,减少重复代码的编写,并提高程序的可读性和可维护性。无论是初学者还是资深开发者,深入理解函数的使用和设计都是编写高质量代码的基础。本文将从基础概念开始,逐步讲解 Python 中的函数及其高级特性。
Python入门:8.Python中的函数
|
1天前
|
存储 索引 Python
Python入门:6.深入解析Python中的序列
在 Python 中,**序列**是一种有序的数据结构,广泛应用于数据存储、操作和处理。序列的一个显著特点是支持通过**索引**访问数据。常见的序列类型包括字符串(`str`)、列表(`list`)和元组(`tuple`)。这些序列各有特点,既可以存储简单的字符,也可以存储复杂的对象。 为了帮助初学者掌握 Python 中的序列操作,本文将围绕**字符串**、**列表**和**元组**这三种序列类型,详细介绍其定义、常用方法和具体示例。
Python入门:6.深入解析Python中的序列
|
1天前
|
程序员 UED Python
Python入门:3.Python的输入和输出格式化
在 Python 编程中,输入与输出是程序与用户交互的核心部分。而输出格式化更是对程序表达能力的极大增强,可以让结果以清晰、美观且易读的方式呈现给用户。本文将深入探讨 Python 的输入与输出操作,特别是如何使用格式化方法来提升代码质量和可读性。
Python入门:3.Python的输入和输出格式化
|
1天前
|
缓存 算法 数据处理
Python入门:9.递归函数和高阶函数
在 Python 编程中,函数是核心组成部分之一。递归函数和高阶函数是 Python 中两个非常重要的特性。递归函数帮助我们以更直观的方式处理重复性问题,而高阶函数通过函数作为参数或返回值,为代码增添了极大的灵活性和优雅性。无论是实现复杂的算法还是处理数据流,这些工具都在开发者的工具箱中扮演着重要角色。本文将从概念入手,逐步带你掌握递归函数、匿名函数(lambda)以及高阶函数的核心要领和应用技巧。
Python入门:9.递归函数和高阶函数
|
1天前
|
存储 SQL 索引
Python入门:7.Pythond的内置容器
Python 提供了强大的内置容器(container)类型,用于存储和操作数据。容器是 Python 数据结构的核心部分,理解它们对于写出高效、可读的代码至关重要。在这篇博客中,我们将详细介绍 Python 的五种主要内置容器:字符串(str)、列表(list)、元组(tuple)、字典(dict)和集合(set)。
Python入门:7.Pythond的内置容器
|
1天前
|
存储 Linux iOS开发
Python入门:2.注释与变量的全面解析
在学习Python编程的过程中,注释和变量是必须掌握的两个基础概念。注释帮助我们理解代码的意图,而变量则是用于存储和操作数据的核心工具。熟练掌握这两者,不仅能提高代码的可读性和维护性,还能为后续学习复杂编程概念打下坚实的基础。
Python入门:2.注释与变量的全面解析
|
1天前
|
知识图谱 Python
Python入门:4.Python中的运算符
Python是一间强大而且便捷的编程语言,支持多种类型的运算符。在Python中,运算符被分为算术运算符、赋值运算符、复合赋值运算符、比较运算符和逻辑运算符等。本文将从基础到进阶进行分析,并通过一个综合案例展示其实际应用。
|
5月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
148 1
|
6月前
|
机器学习/深度学习 数据处理 计算机视觉
NumPy实践宝典:Python高手教你如何轻松玩转数据处理!
【8月更文挑战第22天】NumPy是Python科学计算的核心库,专长于大型数组与矩阵运算,并提供了丰富的数学函数。首先需安装NumPy (`pip install numpy`)。之后可通过创建数组、索引与切片、执行数学与逻辑运算、变换数组形状及类型、计算统计量和进行矩阵运算等操作来实践学习。NumPy的应用范围广泛,从基础的数据处理到图像处理都能胜任,是数据科学领域的必备工具。
80 0
|
3月前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
117 3

热门文章

最新文章

推荐镜像

更多