「数据中心运维」集成和自动化的平台 StackStorm概述

简介: 「数据中心运维」集成和自动化的平台 StackStorm概述

关于

StackStorm是一个用于跨服务和工具进行集成和自动化的平台。它将您现有的基础结构和应用程序环境联系在一起,这样您就可以更容易地自动化该环境。它特别关注在事件发生后采取的行动。

StackStorm帮助自动化常见的操作模式。一些例子:

  • 方便的故障诊断——触发Nagios、senu、New Relic和其他监控系统捕获的系统故障,对物理节点、OpenStack或Amazon实例和应用程序组件进行一系列诊断检查,并将结果发布到共享的通信上下文,如HipChat或JIRA。
  • 自动修复——识别和验证OpenStack计算节点上的硬件故障,适当地疏散实例,并向管理员发送关于潜在停机时间的电子邮件,但如果出现任何问题——冻结工作流并调用PagerDuty唤醒人工。
  • 持续部署——使用Jenkins构建和测试,提供一个新的AWS集群,使用负载均衡器打开一些流量,并根据NewRelic的应用程序性能数据进行前滚或后滚。

StackStorm帮助您将这些和其他操作模式组合为规则和工作流或操作。这些规则和工作流(StackStorm平台内的内容)被存储为代码,这意味着它们支持与现在用于代码开发的协作方法相同的方法。它们可以与更广泛的开源社区共享,例如通过StackStorm社区。

工作原理


StackStorm通过可扩展的包含传感器和操作的适配器集插入到环境中。

  1. 传感器是Python插件,用于接收或监视事件的入站或出站集成。当来自外部系统的事件发生并由传感器处理时,将向系统发出StackStorm触发器。
  2. 触发器是外部事件的StackStorm表示。有通用触发器(如计时器、网络挂钩)和集成触发器(如senu alert、JIRA issue updated)。可以通过编写传感器插件来定义新的触发器类型。
  3. 操作是StackStorm出站集成。有通用操作(ssh、REST调用)、集成(OpenStack、Docker、Puppet)或自定义操作。操作可以是Python插件,也可以是任何脚本,都可以通过添加几行元数据在StackStorm中使用。用户可以通过CLI或API直接调用操作,或者作为规则和工作流的一部分使用和调用操作。
  4. 规则将触发器映射到操作(或工作流),应用匹配标准并将触发器有效负载映射到操作输入。
  5. 工作流将操作缝在一起形成“超级操作”,定义顺序、转换条件并传递数据。大多数自动化操作不止一步,因此需要多个操作。工作流与“原子”操作一样,可以在操作库中使用,可以手动调用或由规则触发。
  6. 包是内容部署的单元。它们通过分组集成(触发器和操作)和自动化(规则和工作流)简化了StackStorm可插内容的管理和共享。越来越多的包可用于StackStorm交换。用户可以创建自己的包,在Github上共享它们,或者提交到StackStorm Exchange。
  7. 动作执行的审计跟踪,手动或自动,记录和存储触发上下文和执行结果的完整细节。它还被捕获在审计日志中,以便与外部日志和分析工具集成:LogStash、Splunk、statsd、syslog。

StackStorm是一个具有模块化架构的服务。它由通过消息总线通信的松散耦合的服务组件组成,并水平扩展以按比例交付自动化。StackStorm有一个Web UI,一个CLI客户端,当然还有一个完整的REST API。我们还提供了Python客户端绑定,以简化开发人员的工作。

StackStorm是一个新产品,正在积极开发中。我们非常渴望参与社区,获得反馈并完善我们的方向。

相关文章
|
28天前
|
存储 文字识别 自然语言处理
通义大模型在文档自动化处理中的高效部署指南(OCR集成与批量处理优化)
本文深入探讨了通义大模型在文档自动化处理中的应用,重点解决传统OCR识别精度低、效率瓶颈等问题。通过多模态编码与跨模态融合技术,通义大模型实现了高精度的文本检测与版面分析。文章详细介绍了OCR集成流程、批量处理优化策略及实战案例,展示了动态批处理和分布式架构带来的性能提升。实验结果表明,优化后系统处理速度可达210页/分钟,准确率达96.8%,单文档延迟降至0.3秒,为文档处理领域提供了高效解决方案。
117 0
|
2月前
|
数据采集 机器学习/深度学习 人工智能
运维人的“福音”?AI 驱动的自动化网络监控到底香不香!
运维人的“福音”?AI 驱动的自动化网络监控到底香不香!
190 0
|
3天前
|
运维 Prometheus 监控
系统崩了怪运维?别闹了,你该问问有没有自动化!
系统崩了怪运维?别闹了,你该问问有没有自动化!
32 9
|
1月前
|
机器学习/深度学习 人工智能 运维
运维不背锅,从“自动修锅”开始:AI自动化运维是怎么回事?
运维不背锅,从“自动修锅”开始:AI自动化运维是怎么回事?
171 49
|
5月前
|
人工智能 Kubernetes jenkins
容器化AI模型的持续集成与持续交付(CI/CD):自动化模型更新与部署
在前几篇文章中,我们探讨了容器化AI模型的部署、监控、弹性伸缩及安全防护。为加速模型迭代以适应新数据和业务需求,需实现容器化AI模型的持续集成与持续交付(CI/CD)。CI/CD通过自动化构建、测试和部署流程,提高模型更新速度和质量,降低部署风险,增强团队协作。使用Jenkins和Kubernetes可构建高效CI/CD流水线,自动化模型开发和部署,确保环境一致性并提升整体效率。
|
4月前
|
人工智能 网络协议 Java
RuoYi AI:1人搞定AI中台!开源全栈式AI开发平台,快速集成大模型+RAG+支付等模块
RuoYi AI 是一个全栈式 AI 开发平台,支持本地 RAG 方案,集成多种大语言模型和多媒体功能,适合企业和个人开发者快速搭建个性化 AI 应用。
1343 77
RuoYi AI:1人搞定AI中台!开源全栈式AI开发平台,快速集成大模型+RAG+支付等模块
|
5月前
|
人工智能 运维 数据可视化
1分钟集成DeepSeek满血版!搭建智能运维助手
阿里云 AI 搜索开放平台面向企业及开发者提供丰富的组件化AI搜索服务,本文将重点介绍基于AI搜索开放平台内置的 DeepSeek-R1 系列大模型,如何搭建 Elasticsearch AI Assistant。
835 173
1分钟集成DeepSeek满血版!搭建智能运维助手
|
10天前
|
运维 监控 安全
从实践到自动化:现代运维管理的转型与挑战
本文探讨了现代运维管理从传统人工模式向自动化转型的必要性与路径,分析了传统运维的痛点,如效率低、响应慢、依赖经验等问题,并介绍了自动化运维在提升效率、降低成本、增强系统稳定性与安全性方面的优势。结合技术工具与实践案例,文章展示了企业如何通过自动化实现运维升级,推动数字化转型,提升业务竞争力。
|
20天前
|
人工智能 缓存 运维
运维人不用秃头了?AI自动化配置管理了解一下!
运维人不用秃头了?AI自动化配置管理了解一下!
34 0
|
1月前
|
运维 监控 Linux
WGCLOUD运维平台的分布式计划任务功能介绍
WGCLOUD是一款免费开源的运维监控平台,支持主机与服务器性能监控,具备实时告警和自愈功能。本文重点介绍其计划任务功能模块,可统一管理Linux和Windows主机的定时任务。相比手动配置crontab或Windows任务计划,WGCLOUD提供直观界面,通过添加cron表达式、执行指令或脚本并选择主机,即可轻松完成任务设置,大幅提升多主机任务管理效率。