《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB MySQL版解析与实践(下)——三、SQL优化与慢查询解决(下)

本文涉及的产品
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: 《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB MySQL版解析与实践(下)——三、SQL优化与慢查询解决(下)

更多精彩内容,欢迎观看:

《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB MySQL版解析与实践(下)——三、SQL优化与慢查询解决(上)https://developer.aliyun.com/article/1222969?spm=a2c6h.13148508.setting.21.77f14f0es0kEi9



4. 典型慢查询

 

1) 消耗内存的慢查询

 

Stage中有GROUP BY操作,如果GROUP BY后面有大量不同值,首先GROUP BY会在内存中缓存这些不同值,会消耗大量内存。

Stage中有Join操作,在AnalyticDB MySQL中,Join多数情况下使用HASH,Join将其中一个小表构建HASH表加快运算过程,如果小表也比较大,对应构建的HASH表也会比较大,消耗大量内存。

Stage中有SORT操作,排序需要在内存中运行。

Stage中有窗口函数操作,比如常见的RANK、DENSE_RANK、ROW_NUMBER需要在内存中完成

 

2) 消耗CPU的慢查询

 

过滤条件没有下推到存储层,会消化大量CPU。

Join条件中带有过滤操作

Join时没有指定Join条件

 

3) 消耗磁盘I/O的慢查询

 

过滤条件的数据筛选率较低

正常情况下存储层利用索引进行数据的过滤,如果过滤条件没有下推,导致对源表进行了全表扫描,会消化大量的IO。

过滤条件下推,但是过滤条件。设置的范围较大,仍然有大量数据被扫描

需要扫描的分区较多。

 

5. 慢查询诊断与优化

 

1) 发现慢查询

 

用户要定位慢查询,首先需要找到慢查询。ADB的用户控制台提供了“甘特图”和“查询列表”两种形式支持在多个维度上进行检索,帮助用户快速定位慢查询,支持最近两周的全量查询检索和分析。

 

 

2) 甘特图

 

甘特图以图形化的方式,形象的展示了查询在ADB实例上的执行顺序,每个色块表示了一条查询,色块左侧为查询的提交时间,色块右侧为查询的结束时间,色块的相对长度表示了某条查询的执行时间。

 

3) 查询列表

 

支持按数据库名、用户名、客户端段IP、耗时、消耗内存以及扫描量等10余项维度进行检索和查询

支持模糊检索和精确检索

支持字符串类型的检索条件

支持数值类型的检索条件

 

4) SQL自诊断

 

将专家经验以规则的形式体现在执行计划中,对于ADB的初次接触者,即可以根据诊断结果确定查询执行过程中的性能瓶颈点,也可以根据诊断结果学习到ADB执行计划中需要关注的重点算子。

 

5) 诊断结果分层

 

Query级别诊断结果

Stage级别诊断结果

Operator算子级别诊断结果

 

6) 常见慢查询问题

 

返回客户端的数据量较大

JOIN存在数据膨胀

查询生成的Stage个数较大

查询读取的数据量较大

数据倾斜

Stage输入数据倾斜

Stage输出输出倾斜

 

6. 诊断与优化示例

 

1) Left join优化改写为right join

 

Jion有内连接、外连接,外连接又有左外连接和右外连接。Left join是实践中常用的一种表关联方式,由于Hash Join实现会以右表做build,且left Join不会做左右表的重新排序,在右表数据量很大时会造成执行慢、消耗过多内存资源等多个问题。

 

示例

nation是一个25行的小表,customer是一个15000000行的大表,通过explain analyze查看一条包含left join的SQL的执行计划。

 

原语句

 

select count(*) from nation t1 left join customer t2 on t1.n_nationkey=t2.cnationkey

 

问题

 

nation是左表,customer是右表,通过explain analyze分析,PeakMemory:515MB93.68%,WallTime4.34s43.05%),PeakMemory的占比高达93.68%,可以判断,left join为整个SQL的性能瓶颈。

 

解决方案

 

将lift join 改成right join,新语句:

 

select count(*) from Customert2 right join nationtion t1.n nationkey=t2.cnationkey

 

优化方案

 

可以将LEFT_TO_RIGHT_ENABLED设置为true,即两个表可以做相互转化,新语句和效果如下:

 

/*+LEFT_TO_RIGHT_ENABLED=true,CASCADES_OPTIMIZER_ENABLED=false*/

select count() from nation t1 left join customer t2 on t1.n_nationkey =t2.cnationkey

 

调整后PeakMemory的值为889KB3.31%,从515MB下降到889KB,已经不是计算热点。

 

2) 过滤条件不下推

 

在某些场景中,使用索引过滤数据不一定能得到较好的性能,甚至会影响整体性能。

过滤条件不下推功能,可以在查询级别或实例级别暂时蔽掉某些字段的过滤条件下推能力,带来更好整体查询收益。

 

不建议使用索引过滤数据条件的情况有以下三种:

 

数据唯一值少

磁盘IO压力大

同时有多个条件下推

 

设置过滤条件不下推:

 

/*+filter_not_pushdown_columns=[${database}.${tableName}:${col1Name}|${col2Name}]*/

/*+filter_not_pushdown_columns=[test01.table01:id|product]*/

 

3) 分组聚合查询优化

 

语句

 

SELECT sum(A), max(B) FROM tb1 GROUP BY C, D;

 

image.png

 

如图执行分组查询,如果C、D的组合值非常多,采用数据的局部PARTIAL聚合,由于C、D组合规模比较大,导致中间结果也比较大,然后在做最后的聚合时会达不到聚合的效果。

数据根据分组字段进行节点间的数据重分布,执行最终FINAL聚合,会避免中间结果数据的膨胀,减少中间结果的压力、网络堵塞等情况

 

7. 优化原则

 

合理选择分布列、分区列,避免数据倾斜导致长尾任务提升写入效率

配置较高的资源类型及较多的实例个数

基于一级分区设置数据的生命周期

适当设置较大的分区数,提升磁盘应用率

选择合适的数据同步策略:同步工具、方法、方式以及适当并发数。

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
22天前
|
监控 关系型数据库 MySQL
MySQL自增ID耗尽应对策略:技术解决方案全解析
在数据库管理中,MySQL的自增ID(AUTO_INCREMENT)属性为表中的每一行提供了一个唯一的标识符。然而,当自增ID达到其最大值时,如何处理这一情况成为了数据库管理员和开发者必须面对的问题。本文将探讨MySQL自增ID耗尽的原因、影响以及有效的应对策略。
70 3
|
23天前
|
存储 关系型数据库 MySQL
MySQL 字段类型深度解析:VARCHAR(50) 与 VARCHAR(500) 的差异
在MySQL数据库中,`VARCHAR`类型是一种非常灵活的字符串存储类型,它允许存储可变长度的字符串。然而,`VARCHAR(50)`和`VARCHAR(500)`之间的差异不仅仅是长度的不同,它们在存储效率、性能和使用场景上也有所不同。本文将深入探讨这两种字段类型的区别及其对数据库设计的影响。
37 2
|
27天前
|
存储 关系型数据库 MySQL
PHP与MySQL动态网站开发深度解析####
本文作为技术性文章,深入探讨了PHP与MySQL结合在动态网站开发中的应用实践,从环境搭建到具体案例实现,旨在为开发者提供一套详尽的实战指南。不同于常规摘要仅概述内容,本文将以“手把手”的教学方式,引导读者逐步构建一个功能完备的动态网站,涵盖前端用户界面设计、后端逻辑处理及数据库高效管理等关键环节,确保读者能够全面掌握PHP与MySQL在动态网站开发中的精髓。 ####
|
1月前
|
机器学习/深度学习 存储 SQL
数据仓库革新:Snowflake在云数据平台中的创新实践
【10月更文挑战第27天】Snowflake作为云原生数据仓库的领导者,以其多租户、事务性、安全的特性,支持高度可扩展性和弹性,全面兼容SQL及多种数据类型。本文探讨了Snowflake在现代化数据仓库迁移、实时数据分析、数据存储与管理及机器学习集成等领域的创新实践和应用案例,展示了其在云数据平台中的强大优势和未来潜力。
39 2
|
1月前
|
存储 运维 Cloud Native
数据仓库革新:Snowflake在云数据平台中的创新实践
【10月更文挑战第26天】随着大数据时代的到来,数据仓库正经历重大变革。本文探讨了Snowflake在云数据平台中的创新应用,通过弹性扩展、高性能查询、数据安全、多数据源接入和云原生架构等最佳实践,展示了其独特优势,帮助企业提升数据处理和分析效率,保障数据安全,降低运维成本,推动业务快速发展。
48 2
|
1月前
|
存储 关系型数据库 MySQL
MySQL MVCC深度解析:掌握并发控制的艺术
【10月更文挑战第23天】 在数据库领域,MVCC(Multi-Version Concurrency Control,多版本并发控制)是一种重要的并发控制机制,它允许多个事务并发执行而不产生冲突。MySQL作为广泛使用的数据库系统,其InnoDB存储引擎就采用了MVCC来处理事务。本文将深入探讨MySQL中的MVCC机制,帮助你在面试中自信应对相关问题。
111 3
|
19天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
49 2
|
2月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
72 0
|
2月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
57 0
|
2月前
|
存储 Java C++
Collection-PriorityQueue源码解析
Collection-PriorityQueue源码解析
64 0

推荐镜像

更多