可信联邦学习 (Trustworthy federated learning) 是一种增强型的联邦学习,它除了保证原始数据的隐私安全和模型的可证安全,还保证学习过程的高效率和模型的可用性,模型决策机制的可解释性、及模型的可溯源和审计监管。
在近期的诸多研究中,可信联邦学习在医疗领域获得了哪些拓展?解决了哪些新的问题?
为了帮助读者了解面向医疗的可信联邦学习研究进展,机器之心机动组组织策划了最新一期直播分享。
在 10 月 20 日的分享中,微众银行人工智能首席科学家范力欣博士将首先进行主题分享。之后,五篇论文作者将从不同角度介绍可信联邦学习在医疗领域的最新研究成果。
其中,《MetaFed》论文提出了元联邦既联邦的联邦概念及 MetaFed 层次化动态环联邦学习框架,以较小通信代价,达到在无中心服务端参与情形下获取精度提升及个性化学习。
《scPrivacy》论文提出了基于联邦深度度量学习的单细胞细胞类型识别框架 scPrivacy,解决了整合多个机构的单细胞转录组数据集中的数据隐私保护问题。
《FedDUAP》论文利用服务器上的不敏感数据和边缘设备中的分散数据来提高训练效率,同时进行基于各层自适应的模型剪枝,实现效率和有效性之间的良好平衡。
《FeARH》论文提出了具有匿名随机杂交的联邦学习算法来训练电子病历数据。与集中式机器学习和传统联邦学习相比,新算法具有相似的 AUCROC 和 AUCPR 结果。
最后一篇论文的研究目标是同时处理联邦学习中两种不同类型的攻击威胁,拜占庭攻击和隐私威胁。研究者利用了一种鲁棒模型聚合,同时实现对拜占庭攻击的鲁棒性和对本地数据的隐私保护。