多模态图像合成与编辑这么火,马普所、南洋理工等出了份详细综述

简介: 多模态图像合成与编辑这么火,马普所、南洋理工等出了份详细综述
本篇综述通过对现有的多模态图像合成与编辑方法的归纳总结,对该领域目前的挑战和未来方向进行了探讨和分析。


近期 OpenAI 发布的 DALLE-2 和谷歌发布的 Imagen 等实现了令人惊叹的文字到图像的生成效果,引发了广泛关注并且衍生出了很多有趣的应用。而文字到图像的生成属于多模态图像合成与编辑领域的一个典型任务。
近日,来自马普所和南洋理工等机构的研究人员对多模态图像合成与编辑这一大领域的研究现状和未来发展做了详细的调查和分析。




在第一章节,该综述描述了多模态图像合成与编辑任务的意义和整体发展,以及本论文的贡献与总体结构。

在第二章节,根据引导图片合成与编辑的数据模态,该综述论文介绍了比较常用的视觉引导(比如 语义图,关键点图,边缘图),文字引导,语音引导,场景图(scene graph)引导和相应模态数据的处理方法以及统一的表示框架。

在第三章节,根据图像合成与编辑的模型框架,该论文对目前的各种方法进行了分类,包括基于 GAN 的方法,自回归方法,扩散模型方法,和神经辐射场(NeRF)方法。



由于基于 GAN 的方法一般使用条件 GAN 和 无条件 GAN 反演,因此该论文将这一类别进一步分为模态内条件(例如语义图,边缘图),跨模态条件(例如文字和语音),和 GAN 反演(统一模态)并进行了详细描述。


相比于基于 GAN 的方法,自回归模型方法能够更加自然的处理多模态数据,以及利用目前流行的 Transformer 模型。自回归方法一般先学习一个向量量化编码器将图片离散地表示为 token 序列,然后自回归式地建模 token 的分布。由于文本和语音等数据都能表示为 token 并作为自回归建模的条件,因此各种多模态图片合成与编辑任务都能统一到一个框架当中。



近期,火热的扩散模型也被广泛应用于多模态合成与编辑任务。例如效果惊人的 DALLE-2 和 Imagen 都是基于扩散模型实现的。相比于 GAN,扩散式生成模型拥有一些良好的性质,比如静态的训练目标和易扩展性。该论文依据条件扩散模型和预训练扩散模型对现有方法进行了分类与详细分析。



以上方法主要聚焦于 2D 图像的多模态合成与编辑。近期随着神经辐射场(NeRF)的迅速发展,3D 感知的多模态合成与编辑也吸引了越来越多的关注。由于需要考虑多视角一致性,3D 感知的多模态合成与编辑是更具挑战性的任务。本文针对单场景优化 NeRF,生成式 NeRF 和 NeRF 反演的三种方法对现有工作进行了分类与总结。

随后,该综述对以上四种模型方法的进行了比较和讨论。总体而言,相比于 GAN,目前最先进的模型更加偏爱自回归模型和扩散模型。而 NeRF 在多模态合成与编辑任务的应用为这个领域的研究打开了一扇新的窗户。


在第四章节,该综述汇集了多模态合成与编辑领域流行的数据集以及相应的模态标注,并且针对各模态典型任务(语义图像合成,文字到图像合成,语音引导图像编辑)对当前方法进行了定量的比较。

在第五章节,该综述对此领域目前的挑战和未来方向进行了探讨和分析,包括大规模的多模态数据集,准确可靠的评估指标,高效的网络架构,以及 3D 感知的发展方向。

在第六和第七章节,该综述分别阐述了此领域潜在的社会影响和总结了文章的内容与贡献。

相关文章
|
9月前
|
机器学习/深度学习 人工智能 算法
从300亿分子中筛出6款,结构新且易合成,斯坦福抗生素设计AI模型登Nature子刊
【4月更文挑战第12天】斯坦福大学研究团队在Nature子刊发表论文,展示人工智能如何从300亿个分子中筛选出6种新型抗生素候选分子,为抗药性问题提供新解决方案。利用深度学习算法,AI模型考虑化学结构及合成可行性,发现独特化合物,加速药物研发。然而,成功应用还需临床试验验证及克服安全性和耐药性挑战。AI技术在药物设计中的角色引起关注,强调平衡使用与基础科学研究的重要性。
73 1
从300亿分子中筛出6款,结构新且易合成,斯坦福抗生素设计AI模型登Nature子刊
|
6月前
|
传感器 人工智能
上交、智源、北大等提出空间大模型SpatialBot
【8月更文挑战第29天】近年来,人工智能技术迅猛发展,视觉语言模型(VLMs)在2D图像理解上取得显著成就,但在空间理解方面仍面临挑战。上交、智源、北大等机构的研究人员提出了结合RGB和深度图像的空间大模型SpatialBot,以提升空间理解精度。通过使用包含多层次深度信息的SpatialQA数据集进行训练,并基于全面评估基准SpatialBench测试,SpatialBot在多个任务中表现出色,显著提升了空间理解能力。然而,其应用仍受限于部署成本和数据集泛化能力等问题。论文链接: https://arxiv.org/abs/2406.13642
96 3
|
6月前
|
算法
ECCV 2024:盲视频去闪烁通用方法BlazeBVD来了,美图&国科大联合提出
【8月更文挑战第15天】随着多媒体的兴起,视频成为信息传播的关键媒介,但视频中的闪烁问题影响观看体验。美图与中国科学院大学联合研发的BlazeBVD算法,采用直方图辅助方法简化学习过程,提高了视频去闪烁的质量与速度。该算法通过2D网络恢复纹理,3D网络修正时间一致性,实现了高效能与高保真度。实验结果显示,BlazeBVD在多种视频类型上表现优秀,推理速度提升显著。尽管如此,算法在处理局部闪烁和复杂场景时仍存在局限性,未来有进一步优化的空间。[论文链接](https://arxiv.org/pdf/2403.06243v1)
95 1
|
6月前
|
机器学习/深度学习 数据可视化 Python
【江西省研究生数学建模竞赛】第三题 植物的多样性 建模方案及参考文献
本文提供了江西省研究生数学建模竞赛第三题“植物的多样性”的建模方案、参考文献和可视化示例,探讨了如何通过数学模型研究植物数量变化规律并提出保持森林多样性的策略。
68 0
【江西省研究生数学建模竞赛】第三题 植物的多样性 建模方案及参考文献
|
7月前
|
机器学习/深度学习 人工智能 算法
300多篇相关研究,复旦、南洋理工最新多模态图像编辑综述论文
【7月更文挑战第11天】复旦、南洋理工联合研究综述了多模态图像编辑,聚焦T2I扩散模型在融合多种输入模式、保持图像真实性和用户友好性方面的挑战与解决方案。论文探讨统一编辑框架,分析算法组件,指出技术进步及未来方向,同时警示伦理和社会影响。[链接:https://arxiv.org/abs/2406.14555]
65 1
|
9月前
|
机器学习/深度学习 自然语言处理 图形学
CVPR 2024:文本一键转3D数字人骨骼动画,阿尔伯塔大学提出MoMask框架
【5月更文挑战第12天】CVPR 2024将展出阿尔伯塔大学的MoMask框架,该框架创新性地将文本转化为3D数字人骨骼动画,推动计算机图形学和动画制作的发展。MoMask结合NLP和计算机视觉,由文本编码器解析输入文本,动作生成器则将其转化为骨骼动画。该技术提升动画制作效率,降低门槛,但面临训练数据需求大和生成动画可能有偏差的挑战。[论文链接](https://arxiv.org/abs/2312.00063)
156 2
|
9月前
|
人工智能 计算机视觉
CVPR 2024:跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式
【5月更文挑战第6天】南洋理工大学研究团队在CVPR 2024会议上提出SurMo,一种动态人体渲染新方法,能高度还原视频中的人物动作和细节,如飞扬的裙摆。SurMo通过4D运动建模,结合表面运动编码、物理运动解码和4D外观解码,实现动态图像的精确合成。尽管面临复杂动作捕捉和计算资源需求的挑战,SurMo在动态人体渲染任务上表现出色,展现了表面基运动三角平面的强大表达能力。[论文链接](https://arxiv.org/pdf/2404.01225.pdf)
179 1
|
9月前
|
测试技术 网络架构 计算机视觉
中科院领衔发表首篇基于扩散模型的图像编辑综述
【2月更文挑战第17天】中科院领衔发表首篇基于扩散模型的图像编辑综述
163 1
中科院领衔发表首篇基于扩散模型的图像编辑综述
|
机器学习/深度学习 网络架构
多模态图像合成与编辑这么火,马普所、南洋理工等出了份详细综述
多模态图像合成与编辑这么火,马普所、南洋理工等出了份详细综述
|
机器学习/深度学习 编解码 vr&ar
DALL-E、「女娲」刷屏背后,多模态图像合成与编辑领域进展如何?
DALL-E、「女娲」刷屏背后,多模态图像合成与编辑领域进展如何?
189 0