上交、智源、北大等提出空间大模型SpatialBot

简介: 【8月更文挑战第29天】近年来,人工智能技术迅猛发展,视觉语言模型(VLMs)在2D图像理解上取得显著成就,但在空间理解方面仍面临挑战。上交、智源、北大等机构的研究人员提出了结合RGB和深度图像的空间大模型SpatialBot,以提升空间理解精度。通过使用包含多层次深度信息的SpatialQA数据集进行训练,并基于全面评估基准SpatialBench测试,SpatialBot在多个任务中表现出色,显著提升了空间理解能力。然而,其应用仍受限于部署成本和数据集泛化能力等问题。论文链接: https://arxiv.org/abs/2406.13642

近年来,随着人工智能技术的飞速发展,视觉语言模型(VLMs)在2D图像理解方面取得了显著的成果。然而,在空间理解方面,这些模型仍然面临着巨大的挑战,而空间理解正是具身人工智能(Embodied AI)的基础。为了解决这一问题,来自上交、智源、北大等机构的研究人员提出了一种名为SpatialBot的空间大模型,旨在通过结合RGB和深度图像,实现更精准的空间理解。

SpatialBot的提出,为解决VLMs在空间理解上的局限性提供了新的思路。首先,它通过同时输入RGB和深度图像,使得模型能够更全面地获取场景信息。相比于传统的VLMs,SpatialBot能够更好地理解场景的三维结构,从而提高空间理解的准确性。

其次,研究人员还构建了一个名为SpatialQA的数据集,用于训练VLMs进行深度理解。这个数据集包含了多层次的深度相关问题,可以帮助模型更好地学习和理解场景的深度信息。

此外,为了全面评估VLMs在空间理解方面的能力,研究人员还提出了一个名为SpatialBench的评估基准。这个基准涵盖了不同层次的空间理解任务,可以更全面地评估模型的性能。

为了验证SpatialBot的有效性,研究人员在多个数据集和任务上进行了广泛的实验。结果显示,经过SpatialQA数据集训练的SpatialBot,在空间理解任务上取得了显著的提升。

具体而言,在研究人员提出的空间理解基准上,SpatialBot的性能明显优于其他基线模型。此外,在一般的VLMs基准和具身AI任务上,SpatialBot也表现出了出色的性能。

然而,尽管SpatialBot在空间理解方面取得了显著的进展,但仍然存在一些挑战和局限性。首先,由于深度图像的获取通常需要额外的传感器或设备,这可能会增加模型的部署成本和复杂性。

其次,尽管SpatialQA数据集为深度理解提供了丰富的训练样本,但仍然存在数据集偏见和泛化能力的问题。因此,如何进一步提高模型的泛化能力,使其能够适应更广泛的应用场景,仍然是未来研究的重要方向。

论文链接: https://arxiv.org/abs/2406.13642

目录
相关文章
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
大模型最强架构TTT问世!斯坦福UCSD等5年磨一剑, 一夜推翻Transformer
【7月更文挑战第21天】历经五年研发,斯坦福、UCSD等顶尖学府联合推出TTT架构,革新NLP领域。此架构以线性复杂度处理长序列,增强表达力及泛化能力,自监督学习下,测试阶段动态调整隐藏状态,显著提升效率与准确性。实验显示,TTT在语言模型与长序列任务中超越Transformer,论文详述于此:[https://arxiv.org/abs/2407.04620](https://arxiv.org/abs/2407.04620)。尽管如此,TTT仍需克服内存与计算效率挑战。
178 2
|
25天前
|
机器学习/深度学习 人工智能 分布式计算
蚁群、蜂群的智慧,大模型也可以有,谷歌等机构群体智能研究亮相
蚁群和蜂群以其独特的群体智能行为著称,如分布式决策、自组织性和鲁棒性。这些特性启发了科学家将群体智能原理应用于大模型的构建,以实现更高效、更智能的系统。谷歌等机构已通过模拟这些行为,开发出如“蚁群优化”算法等成果,显著提高了计算效率和系统的鲁棒性。然而,群体智能的应用仍面临通信协调、个体差异性和可解释性等挑战。
31 3
|
1月前
|
人工智能 计算机视觉 网络架构
OpenAI攻克扩散模型短板,清华校友路橙、宋飏合作最新论文
扩散模型在生成AI领域取得显著成果,但其训练不稳定性和采样速度慢限制了发展。OpenAI与清华校友合作,提出连续时间一致性模型(CMs),通过TrigFlow等创新解决了这些问题,大幅提升了训练稳定性和计算效率,实现了与最优模型相当的样本质量,同时减少了计算资源消耗。
42 2
|
5月前
|
传感器 自动驾驶 算法
自动驾驶理论新突破登Nature子刊!清华、密歇根联合提出三条技术路线,剑指稀疏度灾难
【7月更文挑战第6天】清华大学与密歇根大学研究团队在Nature子刊发表突破性成果,针对自动驾驶的“稀疏度灾难”提出三条技术路线:数据驱动、模型驱动及混合驱动,旨在提升系统应对罕见场景的能力,确保安全性和鲁棒性。这一进展为解决自动驾驶在复杂环境中的决策难题开辟了新途径。[论文链接](https://doi.org/10.1038/s41467-024-49194-0)**
55 3
|
6月前
|
人工智能
拯救被掰弯的GPT-4!西交微软北大联合提出IN2训练治疗LLM中间迷失
【6月更文挑战第1天】研究人员为解决大型语言模型(LLM)的“中间迷失”问题,提出了IN2训练方法。此方法通过显式监督增强模型对长文本上下文的理解,改善了信息检索能力。应用IN2训练的FILM-7B模型在长文本任务上表现出色,尤其在NarrativeQA数据集上的F1分数提升了3.4。尽管面临数据合成和计算成本的挑战,IN2训练为LLM的进步开辟了新途径,预示着未来在长文本处理领域的潜力。论文链接:https://arxiv.org/pdf/2404.16811
87 5
|
7月前
|
人工智能 自然语言处理 监控
GPT-4整治学术不端!人大/浙大团队实测7000篇论文,撤稿预测与人类95%一致
【4月更文挑战第15天】中国人民大学和浙江大学的研究团队利用GPT-4模型预测论文撤稿,研究基于3,505篇撤稿及未撤稿论文的推特数据,发现16%的撤稿论文提及含有预警信号,预测准确度高达92.86%。GPT-4预测一致性达95%,为学术诚信监控提供新途径。但研究受限于主观偏见、撤稿原因区分及推特互动等因素。
109 1
GPT-4整治学术不端!人大/浙大团队实测7000篇论文,撤稿预测与人类95%一致
|
机器学习/深度学习 人工智能 自然语言处理
ICML2023杰出论文大幅减少至6篇,北大、武理工校友获奖,大模型水印受青睐
ICML2023杰出论文大幅减少至6篇,北大、武理工校友获奖,大模型水印受青睐
104 0
ICML2023杰出论文大幅减少至6篇,北大、武理工校友获奖,大模型水印受青睐
|
存储 JSON 人工智能
送给大模型的「高考」卷:442人联名论文给大模型提出204个任务,谷歌领衔
送给大模型的「高考」卷:442人联名论文给大模型提出204个任务,谷歌领衔
174 0
送给大模型的「高考」卷:442人联名论文给大模型提出204个任务,谷歌领衔
|
机器学习/深度学习 传感器 存储
为自动驾驶汽车创造「记忆」,上交校友、康奈尔大学博士生三篇论文被CVPR 2022收录
为自动驾驶汽车创造「记忆」,上交校友、康奈尔大学博士生三篇论文被CVPR 2022收录
201 0
|
机器学习/深度学习 Web App开发 算法
伦敦大学学院、UC伯克利联手,撰文综述深度强化学习泛化研究
伦敦大学学院、UC伯克利联手,撰文综述深度强化学习泛化研究
119 0
下一篇
DataWorks