多模态图像合成与编辑这么火,马普所、南洋理工等出了份详细综述

简介: 多模态图像合成与编辑这么火,马普所、南洋理工等出了份详细综述
本篇综述通过对现有的多模态图像合成与编辑方法的归纳总结,对该领域目前的挑战和未来方向进行了探讨和分析。


近期 OpenAI 发布的 DALLE-2 和谷歌发布的 Imagen 等实现了令人惊叹的文字到图像的生成效果,引发了广泛关注并且衍生出了很多有趣的应用。而文字到图像的生成属于多模态图像合成与编辑领域的一个典型任务。
近日,来自马普所和南洋理工等机构的研究人员对多模态图像合成与编辑这一大领域的研究现状和未来发展做了详细的调查和分析。




在第一章节,该综述描述了多模态图像合成与编辑任务的意义和整体发展,以及本论文的贡献与总体结构。

在第二章节,根据引导图片合成与编辑的数据模态,该综述论文介绍了比较常用的视觉引导(比如 语义图,关键点图,边缘图),文字引导,语音引导,场景图(scene graph)引导和相应模态数据的处理方法以及统一的表示框架。

在第三章节,根据图像合成与编辑的模型框架,该论文对目前的各种方法进行了分类,包括基于 GAN 的方法,自回归方法,扩散模型方法,和神经辐射场(NeRF)方法。



由于基于 GAN 的方法一般使用条件 GAN 和 无条件 GAN 反演,因此该论文将这一类别进一步分为模态内条件(例如语义图,边缘图),跨模态条件(例如文字和语音),和 GAN 反演(统一模态)并进行了详细描述。


相比于基于 GAN 的方法,自回归模型方法能够更加自然的处理多模态数据,以及利用目前流行的 Transformer 模型。自回归方法一般先学习一个向量量化编码器将图片离散地表示为 token 序列,然后自回归式地建模 token 的分布。由于文本和语音等数据都能表示为 token 并作为自回归建模的条件,因此各种多模态图片合成与编辑任务都能统一到一个框架当中。



近期,火热的扩散模型也被广泛应用于多模态合成与编辑任务。例如效果惊人的 DALLE-2 和 Imagen 都是基于扩散模型实现的。相比于 GAN,扩散式生成模型拥有一些良好的性质,比如静态的训练目标和易扩展性。该论文依据条件扩散模型和预训练扩散模型对现有方法进行了分类与详细分析。


以上方法主要聚焦于 2D 图像的多模态合成与编辑。近期随着神经辐射场(NeRF)的迅速发展,3D 感知的多模态合成与编辑也吸引了越来越多的关注。由于需要考虑多视角一致性,3D 感知的多模态合成与编辑是更具挑战性的任务。本文针对单场景优化 NeRF,生成式 NeRF 和 NeRF 反演的三种方法对现有工作进行了分类与总结。

随后,该综述对以上四种模型方法的进行了比较和讨论。总体而言,相比于 GAN,目前最先进的模型更加偏爱自回归模型和扩散模型。而 NeRF 在多模态合成与编辑任务的应用为这个领域的研究打开了一扇新的窗户。


在第四章节,该综述汇集了多模态合成与编辑领域流行的数据集以及相应的模态标注,并且针对各模态典型任务(语义图像合成,文字到图像合成,语音引导图像编辑)对当前方法进行了定量的比较。

在第五章节,该综述对此领域目前的挑战和未来方向进行了探讨和分析,包括大规模的多模态数据集,准确可靠的评估指标,高效的网络架构,以及 3D 感知的发展方向。

在第六和第七章节,该综述分别阐述了此领域潜在的社会影响和总结了文章的内容与贡献。

相关文章
|
8月前
|
人工智能
港科大等发布多模态图推理问答数据集GITQA
【2月更文挑战第14天】港科大等发布多模态图推理问答数据集GITQA
159 7
港科大等发布多模态图推理问答数据集GITQA
|
2月前
|
人工智能 API
EvolveDirector:阿里联合南洋理工推出文本到图像生成模型的高效训练技术
EvolveDirector是由阿里巴巴和南洋理工大学联合推出的文本到图像生成模型的高效训练技术。该框架通过与高级模型的API交互获取数据对,并利用预训练的大型视觉语言模型(VLMs)动态优化训练数据集,显著减少了数据量和训练成本。EvolveDirector能够从多个高级模型中选择最佳样本进行学习,使最终训练出的模型在多个方面超越现有高级模型。
49 0
EvolveDirector:阿里联合南洋理工推出文本到图像生成模型的高效训练技术
|
3月前
|
机器学习/深度学习 自然语言处理
【绝技揭秘】模型微调与RAG神技合璧——看深度学习高手如何玩转数据,缔造预测传奇!
【10月更文挑战第5天】随着深度学习的发展,预训练模型因泛化能力和高效训练而备受关注。直接应用预训练模型常难达最佳效果,需进行微调以适应特定任务。本文介绍模型微调方法,并通过Hugging Face的Transformers库演示BERT微调过程。同时,文章探讨了检索增强生成(RAG)技术,该技术结合检索和生成模型,在开放域问答中表现出色。通过实际案例展示了RAG的工作原理及优势,提供了微调和RAG应用的深入理解。
122 0
|
6月前
|
机器学习/深度学习 人工智能 算法
300多篇相关研究,复旦、南洋理工最新多模态图像编辑综述论文
【7月更文挑战第11天】复旦、南洋理工联合研究综述了多模态图像编辑,聚焦T2I扩散模型在融合多种输入模式、保持图像真实性和用户友好性方面的挑战与解决方案。论文探讨统一编辑框架,分析算法组件,指出技术进步及未来方向,同时警示伦理和社会影响。[链接:https://arxiv.org/abs/2406.14555]
59 1
|
7月前
|
数据采集 人工智能 算法
ICLR 2024 Spotlight:单模型斩获蛋白质突变预测榜一!西湖大学提出基于结构词表方法
【6月更文挑战第1天】西湖大学团队研发的蛋白质语言模型SaProt,在结构词表方法下,于蛋白质突变预测任务中荣登榜首。SaProt利用Foldseek编码的结构标记理解蛋白质行为,超越现有基准模型,在10个下游任务中表现出色。尽管训练资源需求大,且有特定任务优化空间,但该模型为生物医学研究带来新工具,促进科学理解与合作。论文链接:[https://www.biorxiv.org/content/10.1101/2023.10.01.560349v4](https://www.biorxiv.org/content/10.1101/2023.10.01.560349v4)
241 7
|
8月前
|
机器学习/深度学习 自然语言处理
“大模型+强化学习”最新综述!港中文深圳130余篇论文:详解四条主流技术路线
【4月更文挑战第17天】香港中文大学(深圳)研究团队发表综述论文,探讨大型语言模型(LLMs)与强化学习(RL)结合的四条技术路线:信息处理器、奖励设计者、决策制定者和生成器。LLMs提升RL在多任务学习和样本效率,但处理复杂环境时仍有挑战。它们能设计奖励函数,但预训练知识限制在专业任务中的应用。作为决策者和生成器,LLMs提高样本效率和行为解释,但计算开销是问题。
424 1
“大模型+强化学习”最新综述!港中文深圳130余篇论文:详解四条主流技术路线
|
8月前
|
人工智能 计算机视觉
CVPR 2024:跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式
【5月更文挑战第6天】南洋理工大学研究团队在CVPR 2024会议上提出SurMo,一种动态人体渲染新方法,能高度还原视频中的人物动作和细节,如飞扬的裙摆。SurMo通过4D运动建模,结合表面运动编码、物理运动解码和4D外观解码,实现动态图像的精确合成。尽管面临复杂动作捕捉和计算资源需求的挑战,SurMo在动态人体渲染任务上表现出色,展现了表面基运动三角平面的强大表达能力。[论文链接](https://arxiv.org/pdf/2404.01225.pdf)
173 1
|
8月前
|
测试技术 网络架构 计算机视觉
中科院领衔发表首篇基于扩散模型的图像编辑综述
【2月更文挑战第17天】中科院领衔发表首篇基于扩散模型的图像编辑综述
157 1
中科院领衔发表首篇基于扩散模型的图像编辑综述
|
机器学习/深度学习 网络架构
多模态图像合成与编辑这么火,马普所、南洋理工等出了份详细综述
多模态图像合成与编辑这么火,马普所、南洋理工等出了份详细综述
118 0
|
机器学习/深度学习 编解码 vr&ar
DALL-E、「女娲」刷屏背后,多模态图像合成与编辑领域进展如何?
DALL-E、「女娲」刷屏背后,多模态图像合成与编辑领域进展如何?
185 0