腾讯AI Lab联合ETH提出合作博弈新范式,为可解释性等机器学习估值问题提供新方法(2)

简介: 腾讯AI Lab联合ETH提出合作博弈新范式,为可解释性等机器学习估值问题提供新方法

五、实验结果
在实验过程中,我们试图理解以下两点:1)与其他估值方法相比,提出的变分估值方法是否具有更低的解耦误差?2)与经典估值标准相比,我们提出的变分指数能否获得好处?

1. 数据估值实验
我们按照 Ghorbani & Zou (2019)的设置,复用 https://github.com/amiratag/DataShapley 的代码。我们进行数据去除:根据不同标准返回的估值对训练样本进行排序,然后按顺序去除样本,以检查测试准确率下降了多少。直观地说,最好的估值算法会导致性能下降最快。

图 2 中结果显示:在某些情况下,变分指数达到最快的下降率。它总是达到最低的解耦误差(如每个图中的图例所示)。有时变分指数和 Banzhaf 表现出相似的性能, 我们估计这是因为 Banzhaf 值是变分指数的一步近似值,并且对于所考虑的具体问题,在一步不动点迭代之后,解的排名不会改变。


2. 特征估值 / 归因(feature attribution)实验
我们沿用 Lundberg & Lee ( 2017)的设置,并使用 MIT 许可证重用 https://github.com/slundberg/shap 的代码。我们在 Adult 数据集 上训练分类器,该数据集根据人口普查数据预测成人的年收入是否超过 5 万美元。

Feature removal results: 该实验遵循与数据去除实验类似的方式:我们根据返回标准定义的顺序逐一去除特征,然后观察预测概率的变化。Figure 3 报告了三种方法的行为。第一行显示来自 xgboost 分类器的结果(准确度:0.893),第二行显示逻辑回归分类器(准确度:0.842),第三行是多层感知器(准确度:0.861)。对于概率下降的结果,变分指数通常引起最快的下降,它总能达到最小的解耦误差,正如其平均场性质所预期的那样。
从瀑布图可以看出这三个标准确实产生了不同的特征排名。以第一行为例:所有标准都将 “Capital Loss” 和“Relationship”作为前两个特征。然而,剩下的特征有不同的排名:变分指数和 Banzhaf 表示 “Marital Status” 应该排在第三位,而 Shapley 则排在第四位。很难说哪个排名是最好的, 因为:1)没有确定特征真实排名的黄金标准;2) 即使存在一些 “完美模型” 的基本事实排名,这里训练的 xgboost 模型可能无法复制它,因为它可能与 “完美模型” 不一致。


六、结论和未来工作
本文介绍了一种基于能量学习的合作博弈方法,以解决机器学习中的若干估值问题。未来在以下方向非常值得去探索:  1)选择温度 T。温度控制公平性水平,因为当时,所有参与者具有同等重要性,当时,参与者具有 0 或 1 重要性。2)给定概率合作博弈的设定,自然可以在玩家之上添加先验,以便编码更多领域知识。3)在基于能量学习的合作博弈框架中探索一群玩家的互动非常有意义,这有助于研究导致多个玩家联盟之间的 “互动” 指数。

部分参考文献 [Ghorbani & Zou, 2019 ] A. Ghorbani and J. Zou. Data shapley: Equitable valuation of data for machine learning. In International Conference on Machine Learning, pages 2242–2251. PMLR, 2019.[Shapley, 1953] L. S. Shapley. A value for n-person games. Contributions to the Theory of Games, 2(28):307–317, 1953.[Penrose, 1946] L. S. Penrose. The elementary statistics of majority voting. Journal of the Royal Statistical Society, 109(1):53–57, 1946.[Banzhaf III, 1964] J. F. Banzhaf III. Weighted voting doesn’t work: A mathematical analysis. Rutgers L. Rev., 19:317, 1964.[Gutmann and Hyvärinen, 2010] M. Gutmann and A. Hyvärinen. Noise-contrastive estimation: A new estimation principle forunnormalized statistical models. In Proceedings of the Thirteenth International Conference onArtificial Intelligence and Statistics, pages 297–304. JMLRWorkshop and Conference Proceedings, 2010.[Hyvärinen, 2005] A. Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal ofMachine Learning Research, 6(4), 2005.[Minka, 2001] T. P. Minka. Expectation propagation for approximate bayesian inference. In Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence, pages 362–369, 2001.

相关文章
|
1月前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
77 3
|
14天前
|
数据采集 人工智能 编解码
书生·万象InternVL 2.5:上海 AI Lab 开源的多模态大语言模型,超越了目前许多商业模型
书生·万象InternVL 2.5是由上海AI实验室OpenGVLab团队推出的开源多模态大语言模型系列。该模型在多模态理解基准(MMMU)上表现优异,超越了许多商业模型,适用于图像和视频分析、视觉问答、文档理解和多语言处理等多个领域。
62 7
书生·万象InternVL 2.5:上海 AI Lab 开源的多模态大语言模型,超越了目前许多商业模型
|
22天前
|
人工智能 vr&ar
GeneMAN:上海AI Lab联合北大等高校推出的3D人体模型创建框架
GeneMAN是由上海AI实验室、北京大学、南洋理工大学和上海交通大学联合推出的3D人体模型创建框架。该框架能够从单张图片中生成高保真度的3D人体模型,适用于多种应用场景,如虚拟试衣、游戏和娱乐、增强现实和虚拟现实等。
53 7
GeneMAN:上海AI Lab联合北大等高校推出的3D人体模型创建框架
|
27天前
|
人工智能 编解码 BI
LEOPARD:腾讯AI Lab西雅图实验室推出的视觉语言模型
LEOPARD是由腾讯AI Lab西雅图实验室推出的视觉语言模型,专为处理含有大量文本的多图像任务设计。该模型通过自适应高分辨率多图像编码模块和大规模多模态指令调优数据集,在多个基准测试中表现卓越,适用于自动化文档理解、教育和学术研究、商业智能和数据分析等多个应用场景。
40 2
LEOPARD:腾讯AI Lab西雅图实验室推出的视觉语言模型
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之解释性AI与可解释性机器学习
随着人工智能技术的广泛应用,机器学习模型越来越多地被用于决策过程。然而,这些模型,尤其是深度学习模型,通常被视为“黑箱”,难以理解其背后的决策逻辑。解释性AI(Explainable AI, XAI)和可解释性机器学习(Interpretable Machine Learning, IML)旨在解决这个问题,使模型的决策过程透明、可信。
65 2
|
1月前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI:机器学习的魔法与代码
【10月更文挑战第33天】本文将带你走进AI的世界,了解机器学习的原理和应用。我们将通过Python代码示例,展示如何实现一个简单的线性回归模型。无论你是AI新手还是有经验的开发者,这篇文章都会给你带来新的启示。让我们一起探索AI的奥秘吧!
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
40 2
|
1月前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,企业越来越关注大模型的私有化部署。本文详细探讨了硬件资源需求、数据隐私保护、模型可解释性、模型更新和维护等方面的挑战及解决方案,并提供了示例代码,帮助企业高效、安全地实现大模型的内部部署。
155 1
|
1月前
|
机器学习/深度学习 人工智能 自动驾驶
揭秘AI:机器学习如何改变我们的世界
在这篇文章中,我们将深入探讨机器学习如何改变我们的世界。从自动驾驶汽车到智能医疗诊断,机器学习正在逐步渗透到我们生活的每一个角落。我们将通过实例和代码示例,揭示机器学习的工作原理,以及它如何影响我们的生活。无论你是科技爱好者,还是对人工智能充满好奇的普通读者,这篇文章都将为你打开一扇新的大门,带你走进机器学习的世界。
34 0
|
1月前
|
机器学习/深度学习 数据采集 人工智能
自动化测试的未来:AI与机器学习的融合之路
【10月更文挑战第41天】随着技术的快速发展,软件测试领域正经历一场由人工智能和机器学习驱动的革命。本文将探讨这一趋势如何改变测试流程、提高测试效率以及未来可能带来的挑战和机遇。我们将通过具体案例分析,揭示AI和ML在自动化测试中的应用现状及其潜力。
47 0

热门文章

最新文章