腾讯AI Lab联合ETH提出合作博弈新范式,为可解释性等机器学习估值问题提供新方法

简介: 腾讯AI Lab联合ETH提出合作博弈新范式,为可解释性等机器学习估值问题提供新方法
腾讯 AI Lab 与瑞士苏黎世联邦理工合作提出基于能量学习的合作博弈新范式,为可解释性等机器学习中的估值问题提供新理论新方法,论文已被 ICLR 2022 接收。


近年来,估值问题在机器学习中变得日益重要。一些典型的估值问题包括用于可解释性的特征归因(feature attribution),用于合作学习的数据估值(data valuation),以及用于集成学习的模型估值(model valuation for ensembles)。开发合理高效的估值算法对于这些应用至关重要。因此,腾讯 AI Lab 与瑞士苏黎世联邦理工合作发表论文《Energy-Based Learning for Cooperative Games, with Applications to Valuation Problems in Machine Learning》,共同提出基于能量学习的合作博弈新范式,为可解释性等机器学习中的估值问题提供新理论新方法。


论文已在 ICLR 2022 发表:


论文链接:https://openreview.net/forum?id=xLfAgCroImw项目主页:https://valuationgame.github.io/

一、引言:估值问题以及合作博弈的最大熵概率分布
估值问题在各种机器学习应用中变得越来越重要,从特征解释(Lundberg and Lee, 2017)、数据估值(Ghorbani & Zou, 2019)到集成模型估值(Rozemberczki & Sarkar, 2021)。它们通常被表述为合作博弈中的玩家估值问题。一个典型的合作博弈由 n 个玩家 N={1,...,n} 和价值函数(也称为特征函数)构成,其中价值函数描述任何一个联盟 S 的集体收益。

举个例子, 数据估值 (Ghorbani & Zou, 2019)通常被表述为合作博弈中的玩家估值问题。其中的玩家估值问题目的在于估计每个玩家在此合作博弈中的价值。  如图 1 所示,一个典型的数据估值问题使用 n 个训练样本, 进行某种机器学习任务:一个训练样本对应一个玩家,此时价值函数 F(S) 表示使用子集合 S 中的训练样本来训练得到的模型在给定的某个测试数据集上的预测器性能。  使用这种方式,对于一个样本点的估值就转化成了合作博弈中的玩家估值问题。  


图 1 一个典型的数据估值过程

在本文中,我们研究合作博弈的概率处理方式。这样的处理使得以统一的方式进行学习和推理成为可能,并将产生与经典估值方法的联系。具体来说,我们寻求一组概率分布 p(S),以衡量特定子集合 S 的出现几率。

在所有可能的概率质量函数(probability mass function)中,应该如何构造合适的 p(S)?我们选择具有最大熵的概率分布。这个设计是有道理的,因为最大化熵会最小化分布中内置的先验信息量,即对未知的东西不做任何假设,选择最 “均匀” 的分布。现在寻求一个合适的概率分布 p(S) 变成了以下的约束优化问题:

假设每个联盟 S 具有收益 F(S),与概率 p(S) 相关联。我们寻求最大化熵 H(p) = -  ,同时满足约束以及

求解这个优化问题, 我们得到最大熵分布的形式为:


其中 T>0 是温度参数。这也就是能量模型假设的最大熵分布。

上述基于能量学习的处理有两个好处:i) 在有监督的情况下,它可以通过基于能量学习的有效训练技术来学习价值函数 F(S),例如噪声对比估计 (Gutmann & Hyvärinen, 2010) 和分数匹配(Hyvärinen, 2005)。ii) 可以采用近似推理技术,如变分推理或抽样来解决估值问题。具体来说,它能够执行平均场变分推断,其中推断的代理分布的参数可以用作原则上的玩家估值。

基于能量学习的平均场变分推断的另一个好处在于,我们可以直接建立其与经典估值标准的联系。具体地,通过只进行一步定点迭代(fixed point iteration)来最大化平均场目标,我们恢复了经典的估值标准,例如 Shapley 值 (Shapley, 1953) 和 Banzhaf 值(Penrose, 1946; Banzhaf III, 1964)。这一观察结果也进一步支持了现有方法,因为它们均通过平均场方法解耦玩家之间的相关性。而通过运行多步定点迭代,我们获得了一系列估值轨迹,其中我们将具有最佳可想象解耦误差的估值定义为变分指数。

我们的主要贡献可总结如下:

  • 我们提出了一种理论上合理的基于能量学习的合作博弈处理方式。通过平均场推断,我们为流行的博弈论估值方法提供了统一的视角。这通过解耦的观点为现有标准提供了另一种动机,即通过平均场方法解耦 n 个玩家之间的相关性。
  • 为了得到更好的解耦性能,我们运行多步定点迭代,从而生成一系列变分估值。它们都满足一组博弈论公理,这些公理是合适的估值标准所必备的。我们将具有最佳可想象解耦误差的估值定义为变分指数。
  • 多个实验证明我们提出的变分估值的优异特性,包括更低的解耦误差和更好的估值表现。


二、背景
1. 现有的玩家估值方法
目前的估值方法均使用博弈论中的经典估值方法,比如沙普利值(Shapley value) (Shapley, 1953) 和班扎夫值(Banzhaf value) (Penrose, 1946,Banzhaf III, 1964)。沙普利值给玩家 i 分配的估值为:

其中 |S| 表示联盟 S 中玩家的个数。可以看出,它对 n/2 规模的联盟的权重较小。

班扎夫值给玩家 i 分配的估值为:  


它对所有联盟使用统一的权重。

2. 机器学习中的估值问题
目前,大多数类型的估值问题(Lundberg & Lee, 2017 ;Ghorbani & Zou, 2019 ;Sim et al, 2020 ;Rozemberczki & Sarkar, 2021 )使用 Shapley 值作为估值标准。随着过去几十年可解释性机器学习的快速发展(Zeiler & Fergus, 2014;Ribeiro et al, 2016;Lundberg & Lee, 2017;Sundararajan et al, 2017;Petsiuk et al, 2018;Wang et al, 2021a),基于属性的解释旨在为给定黑盒模型 M 的特定数据实例 (x,y) 的特征分配重要性。这里每个特征映射到博弈中的玩家, 而价值函数 F(S)通常是模型的响应,例如当把子集 S 中的特征喂给模型时分类问题的预测概率。一个典型的数据估值问题使用 n 个训练样本N=, 进行某种机器学习任务:一个训练样本对应一个玩家,此时价值函数 F(S) 表示使用子集合 S 中的训练样本来训练得到的模型在给定的某个测试数据集上的预测器性能。集成模型评估(Rozemberczki & Sarkar, 2021)测量集合中单个模型的重要性,其中每个预训练模型映射到一个玩家,价值函数测量模型子集的预测性能。

三、方法简介:合作博弈中玩家估值的解耦视角
对于合作博弈的概率分布,方程(1)中所示的概率分布在所有可能分布中实现了最大熵。人们可以很自然地将合作博弈中的玩家估值问题视为解耦问题:博弈中的 n 个玩家可能以非常复杂的方式任意相关。然而,为了给它们中的每一个分配一个单独的重要性值,我们必须解耦它们的交互,这可以被视为简化它们相关性的一种方式。

因此,我们考虑由 x 中的参数控制的代理分布 q(S;x)。q(S;x) 必须简单,因为我们打算解耦 n 个玩家之间的相关性。一个自然的选择是将 q(S;x) 限制为完全可分解的,这导出了对于 p(S) 的平均场近似。q(S;x) 的最简单形式是一个 n 独立的伯努利分布,即

接下来我们通过最小化 q(S;x) 和 p(S) 的距离, 来近似原来的最大熵分布 p(S)。

1. 解耦视角的目标函数
接下来我们定义两个分布之间的距离为 Kullback‑Leibler 散度,这样就恢复了平均场方法 (mean field inference)。接下来推导出平均场方法的目标函数。  

鉴于式(1)中的最大熵分布,经典的平均场推断方法旨在通过完全分解的乘积分布 q(S;x) 来近似 p(S),通过最小化 q 和 p 之间的 Kullback‑Leibler 散度测量的距离。由于是非负的,我们有:


上述式子中, 代表一个概率分布的熵。重新组织上式, 可以得到:


上式中 ELBO 代表 Evidence Lower Bound.   就是此合作博弈的多线性扩展(multilinear extension):  


经常上述推导, 我们得出了解耦视角的目标函数, 就是公式 (2) 中的 ELBO 目标函数.

2. 解耦视角下计算变分估值的全梯度平均场算法

为了计算变分估值, 我们首先分析目标函数(2)的均衡条件(Equilibrium condition)。  对于坐标 i,多线性扩展的偏导数是,对于熵项,它的偏导数是。通过在方程式中将总体的偏导数设为 0, 我们得到均衡条件为:


这种均衡条件意味着无法通过改变分配给任何玩家的价值,以进一步提高整体的解耦性能。它还意味着我们应当使用如下的定点迭代来更新对于每个玩家的估值:  



基于上述分析, 我们提出下述的全梯度平均场算法 (Mean Field Inference with Full Gradient), 过程如下:  


由此算法产生的估值满足某些博弈论公理。它需要一个初始边际向量和 迭代次数 K。经过 K 步定点迭代,它返回估计的边际值

通过把算法 1 作为子模块, 我们可以定义新的 K 步变分估值方法为:  


四、理论分析
我们可以证明, 所提出的 K 步变分估值一方面可以恢复经典的估值算法, 另一方面它满足三个基本的估值公理。

1. 恢复经典的估值算法
令人惊讶的是,可以通过提出的 K 步变分估值恢复经典估值标准。  首先,对于 Banzhaf 值容易推导出:


这是在 0.5*1 处初始化的 1 步变分估值。我们还可以通过与多线性扩展的连接来恢复 Shapley 值(Owen, 1972;Grabisch et al, 2000):


其中的积分表示沿单位超立方体的主对角线积分多线性扩展的偏导数。论文附录 D 给出了一个独立的证明。

这些结论为这两个经典估值指数提供了一种新颖、统一的解释:Shapley 值和 Banzhaf 值都可以被视为通过为解耦 ELBO 目标运行一步定点迭代来逼近变分指数。具体来说,对于 Banzhaf 值,它将 x 初始化为,并运行一步定点迭代。对于 Shapley 值,它还执行一步定点迭代。然而,它不是从单个初始点开始,而是通过等式中的线积分对所有可能的初始化值进行平均。

2. 满足三个基本的估值公理
我们的能量学习框架引入了一系列由 T 和运行步数 K 控制的变分估值。我们可以证明所提出的 K 步变分估值满足三个基本估值公理:零玩家(null player)、边缘性 (marginalism) 和对称性 (symmetry)。详细的证明在论文附录 E。



相关文章
|
3月前
|
人工智能 自然语言处理 物联网
GEO优化方法有哪些?2025企业抢占AI流量必看指南
AI的不断重塑传统的信息入口之际,用户的搜索行为也从单一的百度、抖音的简单的查找答案的模式,逐渐转向了对DeepSeek、豆包、文心一言等一系列的AI对话平台的更加深入的探索和体验。DeepSeek的不断迭代优化同时,目前其月活跃的用户已破1.6亿,全网的AI用户规模也已超过6亿,这无疑为其下一阶段的迅猛发展提供了坚实的基础和广泛的市场空间。
|
8月前
|
机器学习/深度学习 人工智能 算法
智创 AI 新视界 -- 提升 AI 推理速度的高级方法(16 - 2)
本文深度聚焦提升 AI 推理速度,全面阐述模型压缩(低秩分解、参数量化)、硬件加速(GPU、TPU)及推理算法优化(剪枝感知推理、动态批处理)。结合图像识别等多领域案例与丰富代码示例,以生动形象且专业严谨的方式,为 AI 从业者提供极具价值的技术指南,助力突破 AI 推理速度瓶颈,实现系统性能跃升。
|
4月前
|
人工智能 数据安全/隐私保护 异构计算
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
517 8
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
|
9月前
|
人工智能 算法 数据可视化
机器人训练师狂喜!Infinite Mobility:上海AI Lab造物神器1秒生成可动家具,成本只要1分钱
上海AI Lab推出的Infinite Mobility采用程序化生成技术,可高效生成22类高质量可交互物体,单个生成仅需1秒且成本低至0.01元,已应用于机器人仿真训练等领域。
370 2
机器人训练师狂喜!Infinite Mobility:上海AI Lab造物神器1秒生成可动家具,成本只要1分钱
|
4月前
|
机器学习/深度学习 数据采集 算法
量子机器学习入门:三种数据编码方法对比与应用
在量子机器学习中,数据编码方式决定了量子模型如何理解和处理信息。本文详解角度编码、振幅编码与基础编码三种方法,分析其原理、实现及适用场景,帮助读者选择最适合的编码策略,提升量子模型性能。
370 8
|
4月前
|
人工智能
AI推理方法演进:Chain-of-Thought、Tree-of-Thought与Graph-of-Thought技术对比分析
大语言模型推理能力不断提升,从早期的规模扩展转向方法创新。2022年Google提出Chain-of-Thought(CoT),通过展示推理过程显著提升模型表现。随后,Tree-of-Thought(ToT)和Graph-of-Thought(GoT)相继出现,推理结构由线性链条演进为树状分支,最终发展为支持多节点连接的图网络。CoT成本低但易错传,ToT支持多路径探索与回溯,GoT则实现非线性、多维推理,适合复杂任务。三者在计算成本与推理能力上形成递进关系,推动AI推理向更接近人类思维的方向发展。
325 4
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
1062 8
|
5月前
|
人工智能 JSON 监控
从零开始构建AI Agent评估体系:12种LangSmith评估方法详解
AI Agent的评估需覆盖其整个生命周期,从开发到部署,综合考量事实准确性、推理路径、工具选择、结构化输出、多轮对话及实时性能等维度。LangSmith作为主流评估平台,提供了一套全面的评估框架,支持12种评估技术,包括基于标准答案、程序性分析及观察性评估。这些技术可有效监控Agent各组件表现,确保其在真实场景中的稳定性和可靠性。
2366 0
从零开始构建AI Agent评估体系:12种LangSmith评估方法详解