挖掘GPT的隐藏实力就靠它了

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 这个GitHub新项目,能让ChatGPT完成复杂任务,GPT3.5和GPT-4都支持。它通过将问题拆解,并调用外部资源,提高了GPT的工作能力。在它的调教下,GPT-4回答的准确率从68%提高到了85%。

这个GitHub新项目,能让ChatGPT完成复杂任务,GPT3.5和GPT-4都支持。

它通过将问题拆解,并调用外部资源,提高了GPT的工作能力。

在它的调教下,GPT-4回答的准确率从68%提高到了85%。

ex855w.jpg

这个项目名叫SmartGPT,这个名字很直白地告诉了我们它的作用。

无论是直观感受还是量化数据,GPT在它的加持之下回答正确率都有提高。

我们不妨看看几个经典的问题。

晾干5件衣服需要5个小时,那么晾30件需要多长时间呢?

这是一个来自OpenAI Playground的经典问题。

只见GPT一顿操作猛如虎,又是推理又是列方程……

然而最后给出的答案是30个小时。

image.png

而经过SmartGPT调教之后,不仅得到了正确答案,还指出了此前的思路为什么会出错。


再来举个栗子,同样是来自于OpenAI Playground的问题。

假设有6升和12升的罐子各一个,如何量取6升水?

GPT的答案嘛……麻烦不说,能不能解释下第五步的2升是怎么剩下的?


经过调教之后嘛……虽然不理解为什么不直接用6升的,但也有很大进步了。


我们也用倒拔垂杨柳的问题进行了测试,提供了诸葛亮、孙悟空和林黛玉三个选项。


第一轮,GPT-4给出的答案是……孙悟空。


经过调教之后,GPT-4终于发现了三个选项都是错误的。

同时还指出了孙悟空虽然没有倒拔垂杨柳但是有相似的情节。

(《西游记》第二十五回中,孙悟空在五庄观因愤怒将人参果树拔倒)


需要说明的是,由于没有GPT-4的API,测试是按照开发者介绍的方法手工完成的。

当然了,个例并不能说明它的表现,还是要用数据集测试一下。

开发者使用了MMLU数据集分别对调教前后的GPT-4进行了测试。

结果显示,未经调教的版本只答对了68%,而调教后的版本答对了85%。

顺便提一句,真人专家在测试中的平均成绩是89.8%。


数学方面,同样使用MMLU数据集进行测试,开发者从中选择了15个大学难度的数学问题。

虽然准确率只有60%,但也是及格了,而且比原版GPT的40%已经好了太多。

化整为零,逐步解决

开发者将SmartGPT中的环节形象地比作了职场中的角色:

“甲方”:SmartGPT用户。“经理”:和“甲方”对接,把任务拆分成高级子任务并逐一汇报给“老板”。“老板”:制定计划,将高级子任务再次拆分,并分发给“员工”。“员工”:接收任务,编写伪代码,交给“小黄人”执行。“小黄人”:将伪代码优化成LUA脚本并运行。

作为“甲方”的用户,需要做的只是像使用普通GPT一样输入自己的问题,而不必给出额外指令

SmartGPT会帮助用户把问题拆分,然后按照步骤提交给GPT。

此前有人发现,在输入给GPT的指令中加入“let’s think step by step”可以提高回复的准确率。

同时,GPT-4具有回溯能力,能够发现并指出自己此前回答中的错误。

以上两个特性为SmartGPT的工作提供了重要支撑。


SmartGPT工作流程图

在用户输入完指令后,SmartGPT对其进行处理拆分,包括添加“let’s think step by step”类似的表述。

然后它会将处理好的指令传至GPT的API,并重复多次获取不同的答案。

接着,SmartGPT会向API发送要求其回溯答案并选择最优解的指令。

最后,将GPT自己选择的最佳答案展示给用户。

上述步骤受到了三篇学术论文的启发(图中白框)。

这三篇论文的内容分别关于“链式提示方式”、“动态记忆及让LLM自我回溯”和“用对话提高LLM完成度”。

和其他工具相比,SmartGPT好在哪

AutoGPT等工具同样可以用来优化GPT,SmartGPT比它们好在哪里呢?

由于其工作原理是将任务进行拆分,会形成逻辑链条,因此SmartGPT拥有更强大的推理能力。

实用性方面,SmartGPT由独立的子模块组成,使用者可以对它们进行任意排列、组合和删改。

此外,无论对于用户还是开发人员,SmartGPT的配置过程都更为简单。

不过开发者也坦言,这个项目刚推出不久,因此稳定性有待考证,在内存优化方面还有所欠缺,消耗的环境资源也更多。

在项目推出之后,有网友表示我们低估了GPT的潜力,甚至包括OpenAI自己。


那么,你期待GPT未来的表现吗?

SmartGPT目前暂无开箱可用版本,需要自行在Linux环境搭建,动手能力强的读者可根据下面的项目页面中的指示体验:

项目地址:https://github.com/Cormanz/smartgpt

目录
打赏
0
0
0
0
471
分享
相关文章
人类自身都对不齐,怎么对齐AI?新研究全面审视偏好在AI对齐中的作用
论文《AI对齐中的超越偏好》挑战了偏好主义AI对齐方法,指出偏好无法全面代表人类价值观,存在冲突和变化,并受社会影响。文章提出基于角色的对齐方案,强调AI应与其社会角色相关的规范标准一致,而非仅关注个人偏好,旨在实现更稳定、适用性更广且更符合社会利益的AI对齐。论文链接:https://arxiv.org/pdf/2408.16984
69 2
[大语言模型] 情感认知在大型语言模型中的近期进展-2024-09-26
[大语言模型] 情感认知在大型语言模型中的近期进展-2024-09-26
125 0
揭秘大型机器学习模型背后的秘密:如何在技术深度与广度之间找到完美平衡点,探索那些鲜为人知的设计、训练与部署技巧,让你的作品脱颖而出!
【8月更文挑战第21天】大型机器学习模型是人工智能的关键方向,借助不断增强的计算力和海量数据,已实现在学术与产业上的重大突破。本文深入探讨大型模型从设计到部署的全过程,涉及数据预处理、模型架构(如Transformer)、训练技巧及模型压缩技术,旨在面对挑战时提供解决方案,促进AI技术的实用化进程。
126 1
模型量化技术综述:揭示大型语言模型压缩的前沿技术
在这篇文章中,我将在语言建模的背景下介绍量化,并逐一探讨各个概念,探索各种方法论、用例以及量化背后的原理。
144 0
模型量化技术综述:揭示大型语言模型压缩的前沿技术
|
9月前
|
生成式模型不只会模仿!哈佛、UCSB等最新成果:性能可超越训练集专家水平
【7月更文挑战第23天】研究人员从哈佛大学、UC Santa Barbara等机构展示了生成式模型的新突破:在特定任务上实现超越训练集专家水平的性能。通过“低温度采样”减少模型不确定性,实验中一个名为ChessFormer的模型在下棋任务上表现出了超越性,即性能超过了训练集中专家的平均水平。这项工作揭示了生成式模型在特定条件下实现超越的可能性,为该领域的研究和应用提供了新视角。[论文](https://arxiv.org/pdf/2406.11741)
55 2
可信度超越GPT-4V,清华&面壁揭秘小钢炮模型背后的高效对齐技术
【6月更文挑战第15天】清华大学与面壁智能合作的RLAIF-V框架挑战GPT-4V,通过开源AI反馈增强大语言模型的可信度。该框架利用开放数据和在线学习优化对齐,减少幻觉错误,12B参数模型表现超越GPT-4V。虽有数据质量和稳定性问题,但展示出开源MLLMs潜力。[链接: https://arxiv.org/abs/2405.17220]
166 1
|
10月前
|
拯救被掰弯的GPT-4!西交微软北大联合提出IN2训练治疗LLM中间迷失
【6月更文挑战第1天】研究人员为解决大型语言模型(LLM)的“中间迷失”问题,提出了IN2训练方法。此方法通过显式监督增强模型对长文本上下文的理解,改善了信息检索能力。应用IN2训练的FILM-7B模型在长文本任务上表现出色,尤其在NarrativeQA数据集上的F1分数提升了3.4。尽管面临数据合成和计算成本的挑战,IN2训练为LLM的进步开辟了新途径,预示着未来在长文本处理领域的潜力。论文链接:https://arxiv.org/pdf/2404.16811
127 5
论文介绍:InfLLM——揭示大型语言模型在无需训练的情况下处理极长序列的内在能力
【5月更文挑战第18天】InfLLM是一种新方法,无需额外训练即可增强大型语言模型处理极长序列的能力。通过使用记忆单元存储长序列的远距离上下文,InfLLM能更准确地捕捉长距离依赖,提高对长文本理解。实验表明,InfLLM使预训练在短序列上的模型在处理极长序列时表现媲美甚至超过专门训练的模型。尽管有挑战,如动态上下文分割和记忆单元效率,InfLLM为长序列处理提供了有效且未经训练的解决方案。论文链接:https://arxiv.org/abs/2402.04617
271 3
【大模型】LLMs被广泛地融入日常生活的未来场景分析
【5月更文挑战第7天】【大模型】LLMs被广泛地融入日常生活的未来场景分析
【大模型】LLMs被广泛地融入日常生活的未来场景分析
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等