跟着Nature Communications学作图:R语言ggplot2柱形图展示GO富集分析的结果

简介: 跟着Nature Communications学作图:R语言ggplot2柱形图展示GO富集分析的结果

论文

Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics

https://www.nature.com/articles/s41467-020-14779-y

拟南芥NC_panGenome.pdf

分析代码的github主页

https://github.com/schneebergerlab/AMPRIL-genomes

论文中组装了7个拟南芥的基因组,做了一些泛基因组相关的分析,数据和大部分代码都公开了,我们试着复现一下其中的图和一些分析过程,今天的推文复现一下论文中的figure5e 柱形图展示富集分析的结果

做完GO富集分析,数据格式如下

image.png

数据是excel存储

首先是读取数据

library(readxl)
dat<-read_excel("data/20230318/Source_Data.Figure5/5e/Fig5e.HOT.genes.GO.xlsx")
dat

最基本的柱形图

library(ggplot2)
ggplot(dat,aes(x=Term,y=Count))+
  geom_col()

image.png

进行一些美化

library(tidyverse)

dat %>% 
  mutate(Term=str_replace(Term,"GO:[0-9]+~","")) %>% 
  arrange(desc(Count)) %>% 
  mutate(Term=factor(Term,levels = Term)) %>% 
  ggplot(aes(x=Term,y=Count))+
  geom_col(aes(fill=PValue))+
  theme_bw()+
  theme(axis.text.x = element_text(angle = 60,hjust=1),
        legend.position = c(0.9,0.4))+
  scale_y_continuous(expand = expansion(mult = c(0,0)),
                     limits = c(0,65))+
  scale_fill_gradient(low="blue",high = "red",
                      name=expression(italic("P-value")))+
  labs(x=NULL)

image.png

买一送一,再复现一下论文中的Figure5d

fig5d<-read_delim("data/20230318/Source_Data.Figure5/5d/Fig5d.txt",
                  delim = "\t")
library(ggh4x)

fig5d %>% 
  mutate(region=factor(region,levels = c("SYN","HOR"))) -> fig5d
ggplot(data=fig5d,aes(x=`high-effect-variant-percent`,y=region))+
  geom_boxplot(outlier.alpha = 0,
               aes(fill=region),
               width=0.4)+
  theme_bw()+
  theme(legend.position = "none",
        panel.border = element_blank(),
        axis.line = element_line(),
        panel.grid = element_blank())+
  scale_x_continuous(limits = c(0,15))+
  guides(x=guide_axis_truncated(trunc_lower = 0,
                                trunc_upper = 15),
         y=guide_axis_truncated(trunc_lower = 1,
                                trunc_upper = 2))+
  scale_fill_manual(values = c("#2b6aa8","#f39200"))+
  labs(x="Deleterious variants (%)",y=NULL)

image.png

最后是拼图

library(patchwork)
p2+p1+
  plot_layout(widths = c(1,3))

image.png

示例数据和代码可以给推文点赞,然后点击在看,最后留言获取

欢迎大家关注我的公众号

小明的数据分析笔记本

小明的数据分析笔记本 公众号 主要分享:1、R语言和python做数据分析和数据可视化的简单小例子;2、园艺植物相关转录组学、基因组学、群体遗传学文献阅读笔记;3、生物信息学入门学习资料及自己的学习笔记!

微信公众号好像又有改动,如果没有将这个公众号设为星标的话,会经常错过公众号的推文,个人建议将 小明的数据分析笔记本 公众号添加星标,添加方法是

点开公众号的页面,右上角有三个点

image.png

点击三个点,会跳出界面

image.png

直接点击 设为星标 就可以了

相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
7天前
|
安全 Go 开发者
代码之美:Go语言并发编程的优雅实现与案例分析
【10月更文挑战第28天】Go语言自2009年发布以来,凭借简洁的语法、高效的性能和原生的并发支持,赢得了众多开发者的青睐。本文通过两个案例,分别展示了如何使用goroutine和channel实现并发下载网页和构建并发Web服务器,深入探讨了Go语言并发编程的优雅实现。
19 2
|
14天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
38 3
|
21天前
|
算法 Java 编译器
你为什么不应该过度关注go语言的逃逸分析
【10月更文挑战第21天】逃逸分析是 Go 语言编译器的一项功能,用于确定变量的内存分配位置。变量在栈上分配时,函数返回后内存自动回收;在堆上分配时,则需垃圾回收管理。编译器会根据变量的使用情况自动进行逃逸分析。然而,过度关注逃逸分析可能导致开发效率降低、代码复杂度增加,并且对性能的影响相对较小。编译器优化通常比人工干预更准确,因此开发者应更多关注业务逻辑和整体性能优化。
|
1月前
|
算法 安全 Go
Python与Go语言中的哈希算法实现及对比分析
Python与Go语言中的哈希算法实现及对比分析
35 0
|
1月前
|
机器学习/深度学习 自然语言处理 Go
Python与Go在AIGC领域的应用:比较与分析
Python与Go在AIGC领域的应用:比较与分析
34 0
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为