Nature子刊:AI算法破解癌细胞基因特征,准确率可达99%!

简介: Nature子刊:AI算法破解癌细胞基因特征,准确率可达99%!
【新智元导读】近日,一项由MDC生物信息学家Altuna Akalin团队开发的机器学习算法「Ikarus」破解了癌细胞的基因特征,准确率最高可达99%。


AI又立功了。

 

这次一项新的AI机器学习算法「Ikarus」,可破解癌细胞和正常细胞的基因特征差别。

 

这项研究由MDC生物信息学家Altuna Akalin团队完成,并发表在Nature子刊「Genome Biology」上。

 

论文地址:https://genomebiology.biomedcentral.com/articles/10.1186/s13059-022-02683-1#Sec8

 

此外,负责本次研究的机构MDC(Max Delbrück center)还是德国四大研究机构之一的亥姆霍兹联合会的16个研究中心之一。

 

 

既然这么大来头,那这份研究为啥重磅?

 

从浩如烟海的数据集里筛选出一种「共通的特征」,人类肯定比不上AI。

 

而要将癌细胞和正常细胞区分开来,就需要筛选出它们之间的共通特征。

 

这次MDC的研究团队开发的Ikarus发现了肿瘤细胞中的共通模式(Pattern),它由一系列基因组特征组成,并且常见于各种类型的癌症。

 

此外,算法还检测到了从未和癌症挂钩的基因种类。

 

于是研究团队提出了一个简单的问题:

是否有可能制作一个分类器,将肿瘤细胞与多种癌症类型的正常细胞正确区分开来?

 

于是就有了Ikarus的诞生。它包括两个步骤:

1、通过整合多个经过专业注释的单细胞数据集,以基因集的形式发现全面的肿瘤细胞特征;


2、训练稳健的逻辑回归分类器以严格区分肿瘤和正常细胞,然后使用定制的细胞-细胞网络进行细胞标签的基于网络的传播。

 

团队负责人Altuna Akalin说:

为开发一种强大、灵敏和可重复的计算机肿瘤细胞分选仪,我们已经在使用不同测序技术获得的各种癌症类型的多个单细胞数据集上测试了Ikarus,以确定它适用于不同实验环境。

 

 

惊人的成功率

该论文的第一作者Jan Dohmen表示,在专家已经清楚地区分健康细胞和癌细胞的情况下,获得合适的训练数据是一项重大挑战。

 

单细胞测序数据集通常很冗杂。

 

这意味着它们包含的关于单个细胞分子特征的信息不是很精确,因为在每个细胞中检测到不同数量的基因,或者因为样本的处理方式并不总是相同。

 

Dohmen和该研究的联合负责人Vedran Franke博士说,

我们筛选了无数出版物并联系了相当多的研究小组,以获得足够的数据集。团队最终选择来自肺癌和结直肠癌细胞的数据来训练算法,然后再将其应用于其他类型肿瘤的数据集。

 

在训练阶段,Ikarus必须找到一个「特征基因列表」,然后将其用于对细胞进行分类。

 

 

我们尝试并改进了各种方法,Ikarus最终使用两个列表:一个用于癌症基因,另一个用于来自其他细胞的基因,弗兰克解释道。

 

经过训练之后,该算法就能够区分其他类型癌症中的健康细胞和肿瘤细胞,例如来自肝癌或神经母细胞瘤患者的组织样本。

 

而在其他样本中的结果令人雀跃,成功率出奇地高,最高可达99%。

 

 

「我们没想到会有一个共同的特征可以如此精确地定义不同类型癌症的肿瘤细胞」,Akalin说。

 

「但我们仍然不能说这种方法是否适用于所有类型的癌症」,Dohmen补充道。

 

不只是癌细胞区分


为了将Ikarus变成一种可靠的癌症诊断工具,研究人员现在希望在其他类型的肿瘤上对其进行测试。

 

在最初的测试中,Ikarus已证明该方法还可以将其他类型(和某些亚型)的细胞与肿瘤细胞区分开来,不仅限于肿瘤细胞检测

 

 

它可用于检测任何细胞状态,例如细胞类型,唯一的要求是细胞状态至少存在于两个独立的实验中。

 

Akalin说:

我们希望使这种方法更加全面,进一步发展它,以便它可以区分活检中所有可能的细胞类型。

 

在空间测序数据集上应用自动肿瘤分类可以直接注释组织学样本,从而促进自动化数字病理学。

 

在医院,病理学家往往只在显微镜下检查肿瘤的组织样本,以识别各种细胞类型。这是一项费时费力的工作。

 

 

有了Ikarus,这一步骤有朝一日可能成为一个完全自动化的过程。

 

此外,Akalin指出,这些数据可用于得出有关肿瘤直接环境的结论。这可以帮助医生选择最好的疗法。对于癌组织和微环境的构成,通常表明某种治疗或药物是否有效。

 

此外,人工智能也可能有助于开发新的药物。

 

「Ikarus让我们能够识别出可能导致癌症的基因,然后可以使用新的治疗剂来靶向这些分子结构」Akalin说。

相关文章
|
1月前
|
传感器 人工智能 监控
智慧工地 AI 算法方案
智慧工地AI算法方案通过集成多种AI算法,实现对工地现场的全方位安全监控、精准质量检测和智能进度管理。该方案涵盖平台层、展现层与应用层、基础层,利用AI技术提升工地管理的效率和安全性,减少人工巡检成本,提高施工质量和进度管理的准确性。方案具备算法精准高效、系统集成度高、可扩展性强和成本效益显著等优势,适用于人员安全管理、施工质量监控和施工进度管理等多个场景。
|
1月前
|
传感器 人工智能 监控
智慧电厂AI算法方案
智慧电厂AI算法方案通过深度学习和机器学习技术,实现设备故障预测、发电运行优化、安全监控和环保管理。方案涵盖平台层、展现层、应用层和基础层,具备精准诊断、智能优化、全方位监控等优势,助力电厂提升效率、降低成本、保障安全和环保合规。
智慧电厂AI算法方案
|
8天前
|
机器学习/深度学习 人工智能
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
Leffa 是 Meta 开源的图像生成框架,通过引入流场学习在注意力机制中精确控制人物的外观和姿势。该框架不增加额外参数和推理成本,适用于多种扩散模型,展现了良好的模型无关性和泛化能力。
52 11
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
AI自己长出了类似大脑的脑叶?新研究揭示LLM特征的惊人几何结构
近年来,大型语言模型(LLM)的内部运作机制备受关注。麻省理工学院的研究人员在论文《The Geometry of Concepts: Sparse Autoencoder Feature Structure》中,利用稀疏自编码器(SAE)分析LLM的激活空间,揭示了其丰富的几何结构。研究发现,特征在原子、大脑和星系三个尺度上展现出不同的结构,包括晶体结构、中尺度模块化结构和大尺度点云结构。这些发现不仅有助于理解LLM的工作原理,还可能对模型优化和其他领域产生重要影响。
50 25
|
18天前
|
机器学习/深度学习 缓存 人工智能
【AI系统】QNNPack 算法
QNNPACK是Marat Dukhan开发的量化神经网络计算加速库,专为移动端优化,性能卓越。本文介绍QNNPACK的实现,包括间接卷积算法、内存重排和间接缓冲区等关键技术,有效解决了传统Im2Col+GEMM方法存在的空间消耗大、缓存效率低等问题,显著提升了量化神经网络的计算效率。
32 6
【AI系统】QNNPack 算法
|
18天前
|
存储 人工智能 缓存
【AI系统】Im2Col 算法
Caffe 作为早期的 AI 框架,采用 Im2Col 方法优化卷积计算。Im2Col 将卷积操作转换为矩阵乘法,通过将输入数据重排为连续内存中的矩阵,减少内存访问次数,提高计算效率。该方法首先将输入图像转换为矩阵,然后利用 GEMM 库加速计算,最后将结果转换回原格式。这种方式显著提升了卷积计算的速度,尤其适用于通道数较多的卷积层。
42 5
【AI系统】Im2Col 算法
|
18天前
|
存储 机器学习/深度学习 人工智能
【AI系统】Winograd 算法
本文详细介绍Winograd优化算法,该算法通过增加加法操作来减少乘法操作,从而加速卷积计算。文章首先回顾Im2Col技术和空间组合优化,然后深入讲解Winograd算法原理及其在一维和二维卷积中的应用,最后讨论算法的局限性和实现步骤。Winograd算法在特定卷积参数下表现优异,但其应用范围受限。
30 2
【AI系统】Winograd 算法
|
6天前
|
人工智能 算法
AI+脱口秀,笑点能靠算法创造吗
脱口秀是一种通过幽默诙谐的语言、夸张的表情与动作引发观众笑声的表演艺术。每位演员独具风格,内容涵盖个人情感、家庭琐事及社会热点。尽管我尝试用AI生成脱口秀段子,但AI缺乏真实的情感共鸣和即兴创作能力,生成的内容显得不够自然生动,难以触及人心深处的笑点。例如,AI生成的段子虽然流畅,却少了那份不期而遇的惊喜和激情,无法真正打动观众。 简介:脱口秀是通过幽默语言和夸张表演引发笑声的艺术形式,AI生成的段子虽流畅但缺乏情感共鸣和即兴创作力,难以达到真人表演的效果。
|
1月前
|
机器学习/深度学习 传感器 人工智能
智慧无人机AI算法方案
智慧无人机AI算法方案通过集成先进的AI技术和多传感器融合,实现了无人机的自主飞行、智能避障、高效数据处理及多机协同作业,显著提升了无人机在复杂环境下的作业能力和安全性。该方案广泛应用于航拍测绘、巡检监测、应急救援和物流配送等领域,能够有效降低人工成本,提高任务执行效率和数据处理速度。
智慧无人机AI算法方案
|
22天前
|
存储 人工智能 缓存
【AI系统】布局转换原理与算法
数据布局转换技术通过优化内存中数据的排布,提升程序执行效率,特别是对于缓存性能的影响显著。本文介绍了数据在内存中的排布方式,包括内存对齐、大小端存储等概念,并详细探讨了张量数据在内存中的排布,如行优先与列优先排布,以及在深度学习中常见的NCHW与NHWC两种数据布局方式。这些布局方式的选择直接影响到程序的性能,尤其是在GPU和CPU上的表现。此外,还讨论了连续与非连续张量的概念及其对性能的影响。
45 3

热门文章

最新文章