地球超2亿蛋白质结构全预测,AlphaFold引爆「蛋白质全宇宙」!(2)

简介: 地球超2亿蛋白质结构全预测,AlphaFold引爆「蛋白质全宇宙」!

2020:一举夺魁


2020年,DeepMind发布了AlphaFold软件的第二个版本。

第二代AlphaFold的突破在于,通过预测所有原子的3D结构,来更快更准确地预测出蛋白质结构。

当时,AlphaFold2再一次在CASP大赛上一举夺魁。

CASP认可了AlphaFold的地位,认为这是能够解决蛋白质结构预测这一挑战的方案。

那年,AlphaFold2成功解决了蛋白质折叠问题,将准确性提升到了92.4。

这一突破表明了人工智能对科学发现的影响,以及它在解释和塑造我们的世界的一些最基本领域大幅加速进展的潜力。

当时的DeepMind,在全球大约有1000名员工,其中一些是世界顶级AI专家,都是来自牛津、剑桥、斯坦福或者MIT的博士, 他们的年薪都在100万美元以上。

虽然钱花得多,但DeepMind的一位发言人在当时接受采访时表示,「在产生这些支出的同时,DeepMind也取得了很多开创性的进展。」

2021:引爆学术圈


时间到了2021年,在这一年,AlphaFold2的横空出世,沸腾了整个学术圈。
不仅谷歌CEO皮猜、马斯克、李飞飞等大V纷纷点赞,连马普所的演化生物研究所所长Andrei Lupas都直言:「它会改变一切。」

2021年7月15日,DeepMind在Nature上发表了一篇论文,开源了其基于深度学习神经网络的AlphaFold2模型。

论文地址:https://www.nature.com/articles/s41586-021-03819-2

仅开源一周后,DeepMind便官宣发布AlphaFold数据集,向公众免费开放。

其预测了98.5%的人类蛋白质结构,以及20个其他被大量研究的生物体的完整蛋白质组,其中包括小鼠、酵母菌和大肠杆菌,累计共有36.5万个结构。

一个月后,AlphaFold再次登上Nature,并且上了封面。

在文章中,DeepMind研究人员描述了AlphaFold神经网络的最新更新。

2021年11月17日,Science杂志公布了2021年的年度科学突破榜单,AlphaFold和RoseTTA-fold两种基于人工智能预测蛋白质结构的技术位列榜首。

另外,AlphaFold还荣登2021年年度Nature Methods封面,成为本世纪初的重大科学突破。

2022:彻底改写生物学


2022年,AlphaFold的数据库持续增长。

2022年1月28日,DeepMind使用EMBL-EBI在AlphaFold蛋白质结构数据库中添加了27个新蛋白质组(190k+ 蛋白质)。

2022年7月28日,DeepMind将AlphaFold蛋白质结构数据库从近100万个结构扩展到超过2亿个结构。

自从AlphaFold开源后,研究人员探索了新冠组源,彻底改写了生物学。

十多年来,分子生物学家Martin Beck和他的同事一直在试图拼出世界上最难的拼图之一:人类细胞中最大的分子结构的详细模型。
而AlphaFold2可以根据基因序列精确预测蛋白质的3D形状,这改变了Beck的工作,也改变了成千上万其他生物学家的研究。

Beck说,「AlphaFold改变了游戏规则。」

以色列耶路撒冷希伯来大学的计算结构生物学家Ora Schueler-Furman表示:「这就像一场地震。你可以在任何地方看到它。」

现在,AlphaFold热潮已经席卷了生命科学领域。伦敦大学学院的计算生物学家Christine Orengo说:「我参加的每一次会议,人们都在说,为什么不使用AlphaFold?」

学界大狂欢


DeepMind的首席执行官Demis Hassabis表示:一年前,他们开源了AlphaFold。现在,他们分享了科学界已知的2亿多种蛋白质预测结构。

这庞大数字背后所涵盖的几乎是整个蛋白质宇宙!

与此同时,另一位大佬——谷歌的CEO桑达尔·皮查伊 (Sundar Pichai)也表达了对这份工作的认可。

他说:「从近100万个蛋白质结构扩展到超过2亿个蛋白质结构,几乎涵盖了所有基因组测序的生物体,这是一个巨大的里程碑!」

这位号称美医学界「世纪医生」的Eric Topol,对这个「里程碑」表示赞许:这是AI在生命科学领域的「大日子」,超过2亿个预测的3D蛋白质结构,几乎囊括了整个蛋白质宇宙!

帕特里克·瓦兰斯爵士(Sir Patrick Vallance)认为:这个「里程碑」,不仅仅是当下的一个巨大进步,更是为整个人类世界应对未来的大流行疾病保驾护航!

Ellen Zhong也表示:「这是生物学新时代的曙光!」

正如帕特里克·瓦兰斯爵士(Sir Patrick Vallance)所说的那样:这个「里程碑」在为整个人类世界保驾护航!

纵观AlphaFold的发展历程,我们看到,它已经将生物学带入了一个结构丰富的新时代。从抗击疾病到开发疫苗,AlphaFold取得了令人难以置信的进展。

,时长03:12


过去,确定一个蛋白质的3D结构需要数月或数年,而现在只需要几秒钟。

Demis Hassabis称,「AlphaFold已经成为世界各地实验室和大学中成千上万名科学家的重要工具,从对抗疾病到解决塑料污染,AlphaFold已经对我们面临的一些最大的全球挑战产生了难以置信的影响。」

这个生物学新时代的曙光、这个令人振奋的里程碑,相信在未来,会帮助更多的科学家们开展更多有价值的工作,为科学发展、为人类社会造福!


参考资料:https://www.deepmind.com/blog/alphafold-reveals-the-structure-of-the-protein-universe

相关文章
|
2月前
|
机器学习/深度学习 图形学 计算机视觉
ECCV 2024:南洋理工三维数字人生成新范式:结构扩散模型
【9月更文挑战第6天】南洋理工大学团队提出了一种名为StructLDM的新型三维数字人生成方法,旨在克服现有技术在图像合成质量、细节捕捉及人体结构建模等方面的不足。该方法通过结构化潜在空间、结构化3D感知解码器及结构化潜在扩散模型三项关键技术,实现了高质量的三维数字人生成与编辑,并在多个数据集上展示了卓越的性能和多样性。未来研究将进一步提升模型的鲁棒性和泛化能力。论文预计在ECCV 2024上展示。论文地址:https://arxiv.org/pdf/2404.01241。
39 1
|
5月前
|
人工智能 自然语言处理
高质量3D生成最有希望的一集?GaussianCube在三维生成中全面超越NeRF
【6月更文挑战第24天】论文《Language Models as Text-Based World Simulators?》由多所名校和机构合作完成,探讨大型语言模型(LLMs)如GPT-4是否能胜任世界模拟器角色。新基准BYTE-SIZED32-State-Prediction用于评估其模拟文本游戏状态转换的能力。结果显示,GPT-4在某些任务上接近人类表现,但在算术、常识推理和环境动态模拟上仍有不足,表明LLMs尚无法成为可靠的全功能世界模拟器。研究指出了LLMs改进和未来研究的潜力方向。[[1](https://arxiv.org/pdf/2403.19655)]
52 1
|
5月前
|
人工智能 安全 搜索推荐
1.8B参数,阿里云首个联合DNA、RNA、蛋白质的生物大模型,涵盖16.9W物种
【6月更文挑战第14天】阿里云发布首个集成DNA、RNA和蛋白质数据的生物大模型LucaOne,拥有1.8B参数,涉及16.9万物种。LucaOne通过few-shot learning技术和streamlined downstream architecture实现多生物语言统一处理,提升生物系统理解与分析能力。该模型将加速生物信息学研究,推动生物医学应用,但同时也引发生物数据安全、预测偏差及AI伦理法律等问题的讨论。[论文链接](https://www.biorxiv.org/content/10.1101/2024.05.10.592927v1)
306 3
|
5月前
|
数据采集 人工智能 算法
ICLR 2024 Spotlight:单模型斩获蛋白质突变预测榜一!西湖大学提出基于结构词表方法
【6月更文挑战第1天】西湖大学团队研发的蛋白质语言模型SaProt,在结构词表方法下,于蛋白质突变预测任务中荣登榜首。SaProt利用Foldseek编码的结构标记理解蛋白质行为,超越现有基准模型,在10个下游任务中表现出色。尽管训练资源需求大,且有特定任务优化空间,但该模型为生物医学研究带来新工具,促进科学理解与合作。论文链接:[https://www.biorxiv.org/content/10.1101/2023.10.01.560349v4](https://www.biorxiv.org/content/10.1101/2023.10.01.560349v4)
193 7
|
6月前
|
机器学习/深度学习 人工智能 PyTorch
极智AI | GAN应用于玻璃表面水珠样本生成
大家好,我是极智视界,本文介绍一下 GAN 应用于玻璃表面水珠样本生成的方法。
81 0
极智AI | GAN应用于玻璃表面水珠样本生成
|
人工智能 搜索推荐 数据库
地球超2亿蛋白质结构全预测,AlphaFold引爆「蛋白质全宇宙」!(1)
地球超2亿蛋白质结构全预测,AlphaFold引爆「蛋白质全宇宙」!
160 0
|
机器学习/深度学习 人工智能 算法
物理学家使用人工智能来寻找迄今为止最复杂的蛋白质结
物理学家使用人工智能来寻找迄今为止最复杂的蛋白质结
116 0
|
机器学习/深度学习 人工智能 供应链
当 AI 遇上合成生物,人造细胞前景几何?
当 AI 遇上合成生物,人造细胞前景几何?
109 0
|
机器学习/深度学习 人工智能 数据库
结构生物学没失业!深度评估AlphaFold 2:「蛋白质功能预测」水平不足|NeurIPS 2022
结构生物学没失业!深度评估AlphaFold 2:「蛋白质功能预测」水平不足|NeurIPS 2022
186 0
|
机器学习/深度学习 人工智能 编解码
Meta打造首个「蛋白质宇宙」全景图!用150亿参数语言模型,预测了6亿+蛋白质结构
Meta打造首个「蛋白质宇宙」全景图!用150亿参数语言模型,预测了6亿+蛋白质结构
130 0
下一篇
无影云桌面