地球超2亿蛋白质结构全预测,AlphaFold引爆「蛋白质全宇宙」!(1)

简介: 地球超2亿蛋白质结构全预测,AlphaFold引爆「蛋白质全宇宙」!

新智元新智元 2022-07-29 12:33 发表于北京



 新智元报道  

编辑:拉燕 Aeneas 如願 桃子

【新智元导读】今天,AlphaFold又让学术界沸腾了。DeepMind官宣,AlphaFold可以预测出2亿多个蛋白质结构,几乎覆盖了整个「蛋白质宇宙」。


今天,DeepMind再次引爆学术界!

AlphaFold能够预测2亿多个蛋白质结构,实现数量级的重大飞跃。


最重要的是,全部免费开放!
在未来,预测蛋白质结构就如同使用「谷歌搜索引擎」一样简单。

DeepMind的首席执行官Demis Hassabis称,

这个数据库涵盖了整个蛋白质宇宙,我们已经迈入数字生物学的全新时代!

超2亿蛋白质结构,免费用


不可小觑的是,AlphaFold确实是学术界「海啸级」的存在,足以改变全人类。


2021年,DeepMind开源AlphaFold2后,震撼发布了AlphaFold蛋白质结构数据库(AlphaFold DB) 。

当时,98.5%的人类蛋白质结构全被AlphaFold2预测出来了。

而现在,DeepMind正式宣布该数据库已经从近100万扩大到2.14亿个结构,预测蛋白质结构数量也提升了200多倍!

几乎涵盖了地球上所有已进行过基因组测序的生物体。

据介绍,在超过2亿个蛋白质结构预测中,大约35%的结构具有高精度,并且已达到了实验手段获取的结构精度。

80%的结构可靠性足以用于多项后续分析。

让人兴奋的是,所有蛋白质三维结构都可以通过谷歌云公共数据集 (Google Cloud Public Datasets) 进行批量下载。

https://github.com/deepmind/alphafold/blob/main/afdb/README.md

这次数据库的更新更是涵盖了植物、细菌、动物和其他微生物的蛋白质结构。

另外,DeepMind也将自身数据库集成到其他公共数据集,像Ensembl、UniProt 和 OpenTargets都可以使用。

目前,AlphaFold已被广泛使用,成为了世界各地成千上万实验室和大学的重要工具。

仅发布12个月后,已经有190个国家/地区的50多万研究人员访问数据库AlphaFold DB,查看了超200万个结构。

科学家用其推进现实问题的研究,诸如疟疾候选疫苗、蜜蜂健康、抗生素抗药性等等。

当前公布的这份前所未有的2亿多个蛋白质结构,将帮助我们探索生命科学的无尽奥秘。

AlphaFold的成功逆袭之路


时至今日,一提到AlphaFold,仍旧让人兴奋不已。

因为它的诞生成功破解了生物学持续50年的重大难题——蛋白质折叠问题。

还证明了AI可以在几分钟内以原子精度准确预测蛋白质的形状!

说起AlphaFold的发展历程,其实算得上有些年头了。

很多人可能都不知道,2016年可以说是DeepMind开发AlphaFold萌芽的起点。

2016:潜力无限


2016年,DeepMind的AlphaGo刷爆网络。

来自韩国的世界知名棋手李世石不敌AlphaGo,让人们见识到了AI能做什么。

人们也开始逐渐意识到,AI真的潜力无穷。除了围棋,在未来还能应用在各种各样的科学研究中。

也是从这时开始,DeepMind想尝试用AI解决蛋白质的折叠问题。

很快,AlphaGo吸粉无数的那一年3月,DeepMind组建了一队人马,开始着手研究蛋白质结构的预测问题。

2018:初次亮相


2年后,也就是2018年,生物学界的「AlphaGo」来了。

AlphaFold在国际蛋白质结构预测竞赛(CASP)上首次亮相,力压其他97个参赛者。

当时,AlphaFold预测出了43种蛋白质中25种蛋白质的最精确结构。

在同一类别中排名第二的队伍,只预测出了3种。

一时间,所有人将其为DeepMind在科学发现领域的第一个重要里程碑。


相关文章
|
5月前
|
人工智能 自然语言处理
高质量3D生成最有希望的一集?GaussianCube在三维生成中全面超越NeRF
【6月更文挑战第24天】论文《Language Models as Text-Based World Simulators?》由多所名校和机构合作完成,探讨大型语言模型(LLMs)如GPT-4是否能胜任世界模拟器角色。新基准BYTE-SIZED32-State-Prediction用于评估其模拟文本游戏状态转换的能力。结果显示,GPT-4在某些任务上接近人类表现,但在算术、常识推理和环境动态模拟上仍有不足,表明LLMs尚无法成为可靠的全功能世界模拟器。研究指出了LLMs改进和未来研究的潜力方向。[[1](https://arxiv.org/pdf/2403.19655)]
52 1
|
5月前
|
数据采集 人工智能 算法
ICLR 2024 Spotlight:单模型斩获蛋白质突变预测榜一!西湖大学提出基于结构词表方法
【6月更文挑战第1天】西湖大学团队研发的蛋白质语言模型SaProt,在结构词表方法下,于蛋白质突变预测任务中荣登榜首。SaProt利用Foldseek编码的结构标记理解蛋白质行为,超越现有基准模型,在10个下游任务中表现出色。尽管训练资源需求大,且有特定任务优化空间,但该模型为生物医学研究带来新工具,促进科学理解与合作。论文链接:[https://www.biorxiv.org/content/10.1101/2023.10.01.560349v4](https://www.biorxiv.org/content/10.1101/2023.10.01.560349v4)
191 7
|
6月前
|
机器学习/深度学习 人工智能 PyTorch
极智AI | GAN应用于玻璃表面水珠样本生成
大家好,我是极智视界,本文介绍一下 GAN 应用于玻璃表面水珠样本生成的方法。
81 0
极智AI | GAN应用于玻璃表面水珠样本生成
|
机器学习/深度学习 存储 人工智能
MIT新材料打造「人造突触2.0」,模拟深度学习训练提速100万倍!
MIT新材料打造「人造突触2.0」,模拟深度学习训练提速100万倍!
128 0
|
机器学习/深度学习 人工智能 数据库
地球超2亿蛋白质结构全预测,AlphaFold引爆「蛋白质全宇宙」!(2)
地球超2亿蛋白质结构全预测,AlphaFold引爆「蛋白质全宇宙」!
144 0
|
机器学习/深度学习 人工智能 算法
物理学家使用人工智能来寻找迄今为止最复杂的蛋白质结
物理学家使用人工智能来寻找迄今为止最复杂的蛋白质结
115 0
|
机器学习/深度学习 存储 编解码
深度神经网络每秒分类近20亿张图像,新型类脑光学分类器芯片登上Nature
深度神经网络每秒分类近20亿张图像,新型类脑光学分类器芯片登上Nature
110 0
|
机器学习/深度学习 算法 量子技术
机器学习解决核磁共振谱中「谁是谁」的问题,可直接从晶体结构预测化学位移
机器学习解决核磁共振谱中「谁是谁」的问题,可直接从晶体结构预测化学位移
|
机器学习/深度学习 人工智能 数据库
结构生物学没失业!深度评估AlphaFold 2:「蛋白质功能预测」水平不足|NeurIPS 2022
结构生物学没失业!深度评估AlphaFold 2:「蛋白质功能预测」水平不足|NeurIPS 2022
186 0
|
机器学习/深度学习 人工智能 供应链
当 AI 遇上合成生物,人造细胞前景几何?
当 AI 遇上合成生物,人造细胞前景几何?
109 0