分库分表,可能真的要退出历史舞台了!

本文涉及的产品
云数据库 RDS MySQL Serverless,0.5-2RCU 50GB
云数据库 RDS MySQL Serverless,价值2615元额度,1个月
简介: 分库分表,可能真的要退出历史舞台了!


即使是不懂编程的玩家,在对比 NAS 的时候,也会两眼放光,考虑很多因素,比如 RAID 级别、速度、易用程度等。作为时时刻刻与代码打交道的我们,更需要关注数据的存取问题。

一开始,开箱即用的 MySQL,一定是企业的首选。不仅仅因为用的人多,更重要的是生态成熟。要工具有工具,要人有人。对于老板来说,员工看着不爽,可以随时辞退,是一个非常理想的状态。

但是,没有胸怀的老板,干的一定不会长久,因为如果商务会吹、老板会忽悠,业务会飞速发展(虽然现在这种机会比较少了)。对于 MySQL 来说,很快就会遇到问题。

这个时候,就需要一些比只会用 MySQL 级别高一些的人才,来配合老板圆梦。

是时候了,由单机 MySQL 向分布式发展了。

单机 MySQL 面临很多问题。

  1. 单表太大,比如超过 500w,查询就非常吃力
  2. 单库太大,各种资源告急
  3. 读请求太高,严重影响写请求

对此,一堆概念也是腾空而出,比如分库分表、读写分离等。

很长时间以来,国内互联网的做法普遍是采用加入一个中间件的方式来解决,但随着分布式数据库的技术越来越成熟,这些魔法逐渐下沉到它本应该解决的层面--数据库实现层。

留给分库分表技术的时间,已经不多了,它的存量市场越来越少了。分库分表技术,退出历史舞台,也是迟早的事情了。

解决上面三个单机 MySQL 问题,有很多种切入层面。比如,你简单的在 MyBatis 或者 JPA 之上使用 AOP 或者拦截器封装一层,也可以实现,这也是最傻的方式。

再进一步,就可以采用在 JDBC 之上的驱动层来实现,把分库分表的路由维护在内存里,通过重写的 DataSource、Connection、Statment、ResultSet等,对业务进行无侵入的改进。但可惜的是,我们还必须要维护与逻辑表相对应的物理表,而且功能也是阉割的,不确定性依然不小。更要命的是,JDBC 只支持 Java,对于某些公司来说,就非常的不适用。

再就是中间件的传统模式,Proxy。把自己伪装成一个MySQL Server,接受 Client 的请求。至于它后面怎么去操作真实的数据库,你都不需要知道。但 Proxy 本身也是一套服务,你有运维成本在里面,同时功能依然是阉割的。

框架层,驱动层,代理层,在过去很长一段时间里,有无数的互联网公司前赴后继的试水,从 TDDL、Cobar,到 MyCat、ShardingSphere,各种层面的中间件也是层出不穷。但最近几年,这种争相斗艳的场面逐渐不再,到最后剩下来的,也就ShardingSphere这一枝独秀了。

是问题不存在了么?不,正好相反,问题越来越严重。并不是问题消失了,而是它被转化成其他解决方式了。

抛开关系型数据库不说,很久之前,类似于 ElasticSearch、Cassandra这样的 NoSQL 存储,分片和副本的概念,就已经非常成熟了,而且它们是内置的,并不需要 DBA 去人工维护它们的物理位置。

对于关系型数据库来说,走向分布式也终将成为必然。随着 Raft 等协议应用越来越广泛,分布式数据库的可靠性也逐渐得到了保证。如果你以前因为事务问题而拒绝采用某些 NoSQL 产品,那么如今完全兼容 MySQL 的分布式数据库,你没有理由再说 No。

云厂商,直接提供了像Aurora、PolarDB之类的MySQL增强,更有类似 TiDB、OceanBase 这样纯粹的分布式数据库,越来越多的业务走向了这个终途。当你的团队加班加点验证着分库分表中间件的时候,却发现其实换个兼容的存储就能玩得转,你会怎么选,简直不用再多说。

当然,一旦你选用了分布式数据库,以前的 DBA 经验可能就不管用了,比如说索引及其二级索引。你的团队不得不学习新的知识,来应对分布式环境。

但这些都是阵痛,长远看来,分布式数据库是趋势,而分库分表中间件只能吃存量。

当你的业务有了常年累积的复杂数据,你可能会采用复杂的分库分表组件,但如果你的业务比较新,可预见的未来会有大量数据,那一个分布式数据库可能是最合适的。

分库分表中间件并不是消失了。它摇身一变,变成了分布式数据库的一部分。

你可能会听到很多切到分布式数据库,又从分布式数据库切回到 MySQL 的案例,这属于想吃螃蟹但并没有吃到。目前来看,分布式数据库越来越稳定,生态建设也越来越好。而分库分表,则属于存量业务,终将会退出历史的舞台。

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能




相关实践学习
基于CentOS快速搭建LAMP环境
本教程介绍如何搭建LAMP环境,其中LAMP分别代表Linux、Apache、MySQL和PHP。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
7月前
|
人工智能 机器人 网络架构
企业实战(1) 服务器断电重启业务异常随笔
企业实战(1) 服务器断电重启业务异常随笔
|
10月前
|
设计模式 NoSQL Redis
Bio多线程消费者模式撑起Redis后台任务的半壁江上,这篇我干了,大家随意!
Bio多线程消费者模式撑起Redis后台任务的半壁江上,这篇我干了,大家随意!
|
11月前
|
程序员
同步模式之犹豫模式Balking
同步模式之犹豫模式Balking是一种多线程编程中的同步模式。在该模式中,线程在执行操作之前会先检查某些条件,如果发现在执行操作之前会导致某些不良后果,则该线程会放弃执行该操作,避免出现问题。
76 0
同步模式之犹豫模式Balking
|
存储 NoSQL 关系型数据库
分库分表,可能真的要退出历史舞台了!
分库分表,可能真的要退出历史舞台了!
|
数据库 数据安全/隐私保护
Teradata 宣布退出中国,OushuDB 成为更好选择
Teradata 宣布退出中国,OushuDB 成为更好选择
59 0
python小玩意——无限锁屏(重新开机可以恢复)
python小玩意——无限锁屏(重新开机可以恢复)
|
消息中间件 运维 监控
一次 RocketMQ 进程自动退出排查经验分享(实战篇)
一次 RocketMQ 进程自动退出排查经验分享(实战篇)
一次 RocketMQ 进程自动退出排查经验分享(实战篇)