m基于神经网络的飞机垂直尾翼振动主动控制系统matlab仿真,包括系统辨识和在线控制

简介: m基于神经网络的飞机垂直尾翼振动主动控制系统matlab仿真,包括系统辨识和在线控制

1.算法仿真效果
matlab2022a仿真结果如下:

622244bc5fca73fc7fb37e9d5c6d01b8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
f47a288ca0538113cfb373a6593e1ef4_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
9e4623dfb0f4c26b83aa11fadac09bf0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
246f5da906db3ebea2f846dac394bfe8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
82b72e7f4dcdc99ef309cc399e6c20fc_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
4fc2c4a3950de2dee93a9aebef7a1b9b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

     飞机垂直尾翼的持续涡流载荷会导致垂直尾翼的疲劳损伤,影响飞行器的飞行性能和飞行 安全,因此对尾翼进行振动主动控制是非常有必要的。以某型飞行器50%的垂尾模型为研 究对象,针对垂尾结构控制系统的不确定性和非线性等复杂特性,开展了基于人工神经网络的 垂尾结构控制系统的非线性振动模型辨识和振动主动控制研究和实验。 

   近年来,神经网络的研究得到了越来越多的关注和重视,神经网络以其独特的结构和信息 处理方法,已在系统辨识、信号处理、自动控制与人工智能等领域得到了实际应用。本章介绍 了人工神经网络的构成原理、BP网络和BP算法、神经网络系统辨识理论以及神经网络控制理 论,为神经网络在飞机垂尾模型智能结构振动主动控制系统中的应用奠定基础。 人工神经网络(Artificial Neural Network,简写为ANN),亦称为神经网络(Neural Network, 简写为NN),是由大量简单的处理单元(称为神经元或节点)互相连接而形成的复杂网络系统, 它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学系统。  每个神经元代表一种特定的输出函数,称为传递函数。各神经元之间相互连接形成一个网 络拓扑,不同的神经网络模型对拓扑结构与互联模式都有一定的要求和限制。在每对神经元之 间的连接上还作用一个加权系数,这个加权系数起着生物神经系统中神经元突触强度的作用, 通常称之为连接权值。在神经网络中,连接权值可以根据经验或学习而改变,修改权值的规则 称为学习算法或学习规则。一个神经网络模型描述了一个网络如何将它的输入矢量转化为输出 矢量的过程。通常,神经网络模型的神经元特性、拓扑结构和学习算法是决定神经网络功能特 性的三大要素。 

一:离线辨识

    这个部分,主要是通过给定模型的输入和输出,然后通过网络进行训练,得到神经网络的辨识参数。对于网络辨识部分,其基本构架如下所示:

27a593ecaeba71f75b38b370de87f92f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

     上述的辨识结构,通过控制对象的输入和输出的延迟分别进入F网络和G网络,然后通过网络输出和实际输出的误差对网络F和网络G进行在线学习。

二:在线控制

    这个部分主要理论为论文第四章。理论论文已经有介绍了,这里就不做叙述。其基本结构如下所示:

3a2f3d40b08c0d17d38105ccdad838d3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
2ff59dae2cdf64ce6aaebab7a76391f2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   根据以上所述,设计的控制方法主要具有三大特点:  1) 计算量相对较小,适合快速实时控制系统。  2) 辨识器中的神经网络NARMA-L2模型,用离线训练方式得到, 训练方式上可以选择任意的学习批处理算法,本文采用的是Levenberg-Marquardt算法。 3) 控制系统中具有唯一的在线训练部分,即神经网络控制器的一个前馈通道,控制器对神经 网络系统模型进行重新调整。 


3.MATLAB核心程序

r = Out;
 
parameter;
 
% while Iter < Max_iter
u_delay1 = 0;
u_delay2 = 0;
u_delay3 = 0;
u_delay4 = 0;
y_delay1 = 0;
y_delay2 = 0;
y_delay3 = 0;   
y_delay4 = 0;
Err_tmp  = 0;
for k=1:All_Length
 
    Data_Delays = [y_delay1;
                   y_delay2;
                   y_delay3;
                   u_delay2;
                   u_delay3;
                   u_delay4];
 
    %学习
    [Y_hidden(k),Hidden1G,Hidden2G,Y_hiddenG(k),Hidden1F,Hidden2F,Y_hiddenF(k)] = func_Hiddern(Data_Delays,u_delay1,Num_Hidden,G_wight_In,G_wight_Inb,G_wight_Out,G_wight_Outb,F_wight_In,F_wight_Inb,F_wight_Out,F_wight_Outb);
 
    %根据r计算u           
    u(k) = func_r_u_g0f0(r(k),Y_hiddenG(k),Y_hiddenF(k));
 
 
    %根据辨识结果,计算输出yL
    yL(k) = func_Hiddern2(u_delay1,Num_Hidden,G_wight_In0,G_wight_Inb0,G_wight_Out0,G_wight_Outb0,F_wight_In0,F_wight_Inb0,F_wight_Out0,F_wight_Outb0);
 
    Err_tmp(k) = yL(k) - r(k);
 
 
    %F和G网络 
    %G神经网络计算
    [dg_weight_in,dg_bweight_in,dg_weight_out,dg_bweight_out] = func_G_net(Err_tmp(k),Out(k),In(k),Y_hidden(k),G_wight_Out,Hidden2G,Data_Delays,Y_hiddenG(k),Hidden1G,Num_Hidden,Num_In); 
    %F神经网络计算
    [df_weight_in,df_bweight_in,df_weight_out,df_bweight_out] = func_F_net(Err_tmp(k),Out(k),In(k),Y_hidden(k),F_wight_Out,Hidden2F,Data_Delays,Y_hiddenG(k),Hidden1F,Num_Hidden,Num_In);
 
 
    %G网络权值更新
    [G_wight_In,G_wight_Out,G_wight_Inb,G_wight_Outb]=func_G_W_updata(Learn_Rate,alpha,...
                                                                      G_wight_In1,G_wight_Out1,G_wight_Inb1,F_wight_Outb1,...
                                                                      dg_weight_in,dg_weight_out,dg_bweight_in,dg_bweight_out,...
                                                                      G_wight_Outb1,...
                                                                      G_wight_In2,G_wight_Out2,G_wight_Inb2,G_wight_Outb2);
    %F网络权值更新
    [F_wight_In,F_wight_Out,F_wight_Inb,F_wight_Outb]=func_F_W_updata(Learn_Rate,alpha,...
                                                                      G_wight_In1,F_wight_Out1,F_wight_Inb1,F_wight_Outb1,...
                                                                      df_weight_in,df_weight_out,df_bweight_in,df_bweight_out,...
                                                                      G_wight_In2,F_wight_Out2,F_wight_Inb2,F_wight_Outb2);
 
 
    %延迟
    u_delay4 = u_delay3;
    u_delay3 = u_delay2;
    u_delay2 = u_delay1;
    u_delay1 = In(k); 
 
    y_delay4 = y_delay3;
    y_delay3 = y_delay2;
    y_delay2 = y_delay1;
    y_delay1 = r(k); 
 
    G_wight_In2   = G_wight_In1;
    G_wight_In1   = F_wight_In;
    F_wight_Out2  = F_wight_Out1;
    F_wight_Out1  = F_wight_Out;
    F_wight_Inb2  = F_wight_Inb1;
    F_wight_Inb1  = F_wight_Inb;
    F_wight_Outb2 = F_wight_Outb1;
    F_wight_Outb1 = F_wight_Outb;
 
    G_wight_In2   = G_wight_In1;
    G_wight_In1   = G_wight_In;
    G_wight_Out2  = G_wight_Out1;
    G_wight_Out1  = G_wight_Out;
    G_wight_Inb2  = G_wight_Inb1;
    G_wight_Inb1  = G_wight_Inb;
    G_wight_Outb2 = G_wight_Outb1;
    G_wight_Outb1 = G_wight_Outb;
end
 
figure; 
subplot(121);
plot(r(end-1300:end),'b'); 
xlabel('Times(s)');
ylabel('Out'); 
hold on;
plot(yL(end-1300:end),'r--'); 
xlabel('Times(s)');
ylabel('Out'); 
legend('原始输出','控制后输出');
相关文章
|
13天前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
|
6天前
|
算法 安全 数据安全/隐私保护
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
|
9天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
9天前
|
算法 定位技术 数据安全/隐私保护
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
|
13天前
|
机器学习/深度学习 算法 数据安全/隐私保护
BOC调制信号matlab性能仿真分析,对比功率谱,自相关性以及抗干扰性
本内容介绍了一种基于BOC(Binary Offset Carrier)调制的算法,使用Matlab2022a实现。完整程序运行效果无水印,核心代码配有详细中文注释及操作步骤视频。理论部分阐述了BOC调制在卫星导航中的应用优势:相比BPSK调制,BOC信号功率谱主瓣更窄、自相关函数主峰更尖锐,可优化旁瓣特性以减少干扰,提高频谱利用率和同步精度,适合复杂信道环境下的信号接收与处理。
|
11天前
|
传感器 存储 算法
基于ECC簇内分组密钥管理算法的无线传感器网络matlab性能仿真
本程序基于ECC(椭圆曲线密码学)簇内分组密钥管理算法,对无线传感器网络(WSN)进行MATLAB性能仿真。通过对比网络通信开销、存活节点数量、网络能耗及数据通信量四个关键指标,验证算法的高效性和安全性。程序在MATLAB 2022A版本下运行,结果无水印展示。算法通过将WSN划分为多个簇,利用ECC生成和分发密钥,降低计算与通信成本,适用于资源受限的传感器网络场景,确保数据保密性和完整性。
|
10月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
10月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
131 9
|
8月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
128 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码