m基于神经网络的飞机垂直尾翼振动主动控制系统matlab仿真,包括系统辨识和在线控制

简介: m基于神经网络的飞机垂直尾翼振动主动控制系统matlab仿真,包括系统辨识和在线控制

1.算法仿真效果
matlab2022a仿真结果如下:

622244bc5fca73fc7fb37e9d5c6d01b8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
f47a288ca0538113cfb373a6593e1ef4_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
9e4623dfb0f4c26b83aa11fadac09bf0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
246f5da906db3ebea2f846dac394bfe8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
82b72e7f4dcdc99ef309cc399e6c20fc_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
4fc2c4a3950de2dee93a9aebef7a1b9b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

     飞机垂直尾翼的持续涡流载荷会导致垂直尾翼的疲劳损伤,影响飞行器的飞行性能和飞行 安全,因此对尾翼进行振动主动控制是非常有必要的。以某型飞行器50%的垂尾模型为研 究对象,针对垂尾结构控制系统的不确定性和非线性等复杂特性,开展了基于人工神经网络的 垂尾结构控制系统的非线性振动模型辨识和振动主动控制研究和实验。 

   近年来,神经网络的研究得到了越来越多的关注和重视,神经网络以其独特的结构和信息 处理方法,已在系统辨识、信号处理、自动控制与人工智能等领域得到了实际应用。本章介绍 了人工神经网络的构成原理、BP网络和BP算法、神经网络系统辨识理论以及神经网络控制理 论,为神经网络在飞机垂尾模型智能结构振动主动控制系统中的应用奠定基础。 人工神经网络(Artificial Neural Network,简写为ANN),亦称为神经网络(Neural Network, 简写为NN),是由大量简单的处理单元(称为神经元或节点)互相连接而形成的复杂网络系统, 它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学系统。  每个神经元代表一种特定的输出函数,称为传递函数。各神经元之间相互连接形成一个网 络拓扑,不同的神经网络模型对拓扑结构与互联模式都有一定的要求和限制。在每对神经元之 间的连接上还作用一个加权系数,这个加权系数起着生物神经系统中神经元突触强度的作用, 通常称之为连接权值。在神经网络中,连接权值可以根据经验或学习而改变,修改权值的规则 称为学习算法或学习规则。一个神经网络模型描述了一个网络如何将它的输入矢量转化为输出 矢量的过程。通常,神经网络模型的神经元特性、拓扑结构和学习算法是决定神经网络功能特 性的三大要素。 

一:离线辨识

    这个部分,主要是通过给定模型的输入和输出,然后通过网络进行训练,得到神经网络的辨识参数。对于网络辨识部分,其基本构架如下所示:

27a593ecaeba71f75b38b370de87f92f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

     上述的辨识结构,通过控制对象的输入和输出的延迟分别进入F网络和G网络,然后通过网络输出和实际输出的误差对网络F和网络G进行在线学习。

二:在线控制

    这个部分主要理论为论文第四章。理论论文已经有介绍了,这里就不做叙述。其基本结构如下所示:

3a2f3d40b08c0d17d38105ccdad838d3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
2ff59dae2cdf64ce6aaebab7a76391f2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   根据以上所述,设计的控制方法主要具有三大特点:  1) 计算量相对较小,适合快速实时控制系统。  2) 辨识器中的神经网络NARMA-L2模型,用离线训练方式得到, 训练方式上可以选择任意的学习批处理算法,本文采用的是Levenberg-Marquardt算法。 3) 控制系统中具有唯一的在线训练部分,即神经网络控制器的一个前馈通道,控制器对神经 网络系统模型进行重新调整。 


3.MATLAB核心程序

r = Out;
 
parameter;
 
% while Iter < Max_iter
u_delay1 = 0;
u_delay2 = 0;
u_delay3 = 0;
u_delay4 = 0;
y_delay1 = 0;
y_delay2 = 0;
y_delay3 = 0;   
y_delay4 = 0;
Err_tmp  = 0;
for k=1:All_Length
 
    Data_Delays = [y_delay1;
                   y_delay2;
                   y_delay3;
                   u_delay2;
                   u_delay3;
                   u_delay4];
 
    %学习
    [Y_hidden(k),Hidden1G,Hidden2G,Y_hiddenG(k),Hidden1F,Hidden2F,Y_hiddenF(k)] = func_Hiddern(Data_Delays,u_delay1,Num_Hidden,G_wight_In,G_wight_Inb,G_wight_Out,G_wight_Outb,F_wight_In,F_wight_Inb,F_wight_Out,F_wight_Outb);
 
    %根据r计算u           
    u(k) = func_r_u_g0f0(r(k),Y_hiddenG(k),Y_hiddenF(k));
 
 
    %根据辨识结果,计算输出yL
    yL(k) = func_Hiddern2(u_delay1,Num_Hidden,G_wight_In0,G_wight_Inb0,G_wight_Out0,G_wight_Outb0,F_wight_In0,F_wight_Inb0,F_wight_Out0,F_wight_Outb0);
 
    Err_tmp(k) = yL(k) - r(k);
 
 
    %F和G网络 
    %G神经网络计算
    [dg_weight_in,dg_bweight_in,dg_weight_out,dg_bweight_out] = func_G_net(Err_tmp(k),Out(k),In(k),Y_hidden(k),G_wight_Out,Hidden2G,Data_Delays,Y_hiddenG(k),Hidden1G,Num_Hidden,Num_In); 
    %F神经网络计算
    [df_weight_in,df_bweight_in,df_weight_out,df_bweight_out] = func_F_net(Err_tmp(k),Out(k),In(k),Y_hidden(k),F_wight_Out,Hidden2F,Data_Delays,Y_hiddenG(k),Hidden1F,Num_Hidden,Num_In);
 
 
    %G网络权值更新
    [G_wight_In,G_wight_Out,G_wight_Inb,G_wight_Outb]=func_G_W_updata(Learn_Rate,alpha,...
                                                                      G_wight_In1,G_wight_Out1,G_wight_Inb1,F_wight_Outb1,...
                                                                      dg_weight_in,dg_weight_out,dg_bweight_in,dg_bweight_out,...
                                                                      G_wight_Outb1,...
                                                                      G_wight_In2,G_wight_Out2,G_wight_Inb2,G_wight_Outb2);
    %F网络权值更新
    [F_wight_In,F_wight_Out,F_wight_Inb,F_wight_Outb]=func_F_W_updata(Learn_Rate,alpha,...
                                                                      G_wight_In1,F_wight_Out1,F_wight_Inb1,F_wight_Outb1,...
                                                                      df_weight_in,df_weight_out,df_bweight_in,df_bweight_out,...
                                                                      G_wight_In2,F_wight_Out2,F_wight_Inb2,F_wight_Outb2);
 
 
    %延迟
    u_delay4 = u_delay3;
    u_delay3 = u_delay2;
    u_delay2 = u_delay1;
    u_delay1 = In(k); 
 
    y_delay4 = y_delay3;
    y_delay3 = y_delay2;
    y_delay2 = y_delay1;
    y_delay1 = r(k); 
 
    G_wight_In2   = G_wight_In1;
    G_wight_In1   = F_wight_In;
    F_wight_Out2  = F_wight_Out1;
    F_wight_Out1  = F_wight_Out;
    F_wight_Inb2  = F_wight_Inb1;
    F_wight_Inb1  = F_wight_Inb;
    F_wight_Outb2 = F_wight_Outb1;
    F_wight_Outb1 = F_wight_Outb;
 
    G_wight_In2   = G_wight_In1;
    G_wight_In1   = G_wight_In;
    G_wight_Out2  = G_wight_Out1;
    G_wight_Out1  = G_wight_Out;
    G_wight_Inb2  = G_wight_Inb1;
    G_wight_Inb1  = G_wight_Inb;
    G_wight_Outb2 = G_wight_Outb1;
    G_wight_Outb1 = G_wight_Outb;
end
 
figure; 
subplot(121);
plot(r(end-1300:end),'b'); 
xlabel('Times(s)');
ylabel('Out'); 
hold on;
plot(yL(end-1300:end),'r--'); 
xlabel('Times(s)');
ylabel('Out'); 
legend('原始输出','控制后输出');
相关文章
|
9天前
|
传感器 算法 vr&ar
六自由度Stewart控制系统matlab仿真,带GUI界面
六自由度Stewart平台控制系统是一种高精度、高稳定性的运动模拟装置,广泛应用于飞行模拟、汽车驾驶模拟、虚拟现实等领域。该系统通过六个独立的线性致动器连接固定基座与移动平台,实现对负载在三维空间内的六个自由度(三维平移X、Y、Z和三维旋转-roll、pitch、yaw)的精确控制。系统使用MATLAB2022a进行仿真和控制算法开发,核心程序包括滑块回调函数和创建函数,用于实时调整平台的位置和姿态。
|
4天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
21 3
|
12天前
|
机器学习/深度学习 存储 运维
图神经网络在复杂系统中的应用
图神经网络(Graph Neural Networks, GNNs)是一类专门处理图结构数据的深度学习模型,近年来在复杂系统的研究和应用中展现了强大的潜力。复杂系统通常涉及多个相互关联的组件,其行为和特性难以通过传统方法进行建模和分析。
37 3
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
23天前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
26天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
28天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
8天前
|
机器学习/深度学习 存储 算法
基于Actor-Critic(A2C)强化学习的四旋翼无人机飞行控制系统matlab仿真
基于Actor-Critic强化学习的四旋翼无人机飞行控制系统,通过构建策略网络和价值网络学习最优控制策略。MATLAB 2022a仿真结果显示,该方法在复杂环境中表现出色。核心代码包括加载训练好的模型、设置仿真参数、运行仿真并绘制结果图表。仿真操作步骤可参考配套视频。
23 0
|
21天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
2天前
|
SQL 安全 算法
网络安全与信息安全:漏洞、加密与意识的交织
【10月更文挑战第35天】在数字化时代,网络安全不再是可选项,而是每个网民的必修课。本文旨在深入探讨网络安全的核心要素,包括常见的安全漏洞、先进的加密技术以及不可或缺的安全意识。通过分析这些方面,我们将揭示如何保护个人和组织免受网络攻击的策略,同时提供实用的代码示例,以增强读者的实践能力。文章将引导您思考如何在日益复杂的网络环境中保持警惕,并采取积极措施以确保数据的安全。
13 4
下一篇
无影云桌面