一步一步教你认识 Python 闭包

简介: 我在博客中曾经介绍过两篇关于函数的文章,第一篇是 关于 Python 函数是第一类对象,第二篇是关于 Lambda 函数,今天来说说 Python 闭包。

我在博客中曾经介绍过两篇关于函数的文章,第一篇是 关于 Python 函数是第一类对象,第二篇是关于 Lambda 函数,今天来说说 Python 闭包。

什么是闭包?闭包有什么用?为什么要用闭包?今天我们就带着这3个问题来一步一步认识闭包。

闭包和函数紧密联系在一起,介绍闭包前有必要先介绍一些背景知识,诸如嵌套函数、变量的作用域等概念

作用域

作用域是程序运行时变量可被访问的范围,定义在函数内的变量是局部变量,局部变量的作用范围只能是函数内部范围内,它不能在函数外引用。

定义在模块最外层的变量是全局变量,它是全局范围内可见的,当然在函数里面也可以读取到全局变量的。例如:  

num = 10 # 全局作用域变量
def foo():
    print(num)  # 10

而在函数外部则不可以访问局部变量。例如:

def foo():
    num = 10
print(num)  # NameError: name 'num' is not defined

嵌套函数

函数不仅可以定义在模块的最外层,还可以定义在另外一个函数的内部,像这种定义在函数里面的函数称之为嵌套函数(nested function)例如:

def print_msg():
    # print_msg 是外围函数
    msg = "zen of python"
    def printer():
        # printer是嵌套函数
        print(msg)
    printer()
# 输出 zen of python
print_msg()

对于嵌套函数,它可以访问到其外层作用域中声明的非局部(non-local)变量,比如代码示例中的变量 msg 可以被嵌套函数 printer 正常访问。

那么有没有一种可能即使脱离了函数本身的作用范围,局部变量还可以被访问得到呢?答案是闭包

什么是闭包

函数身为第一类对象,它可以作为函数的返回值返回,现在我们来考虑如下的例子:

def print_msg():
    # print_msg 是外围函数
    msg = "zen of python"
    def printer():
        # printer 是嵌套函数
        print(msg)
    return printer
another = print_msg()
# 输出 zen of python
another()

这段代码和前面例子的效果完全一样,同样输出 "zen of python"。不同的地方在于内部函数 printer 直接作为返回值返回了。

一般情况下,函数中的局部变量仅在函数的执行期间可用,一旦 print_msg() 执行过后,我们会认为 msg变量将不再可用。然而,在这里我们发现 print_msg 执行完之后,在调用 another 的时候 msg 变量的值正常输出了,这就是闭包的作用,闭包使得局部变量在函数外被访问成为可能。

看完这个例子,我们再来定义闭包,维基百科上的解释是:

在计算机科学中,闭包(Closure)是词法闭包(Lexical Closure)的简称,是引用了自由变量的函数。这个被引用的自由变量将和这个函数一同存在,即使已经离开了创造它的环境也不例外。所以,有另一种说法认为闭包是由函数和与其相关的引用环境组合而成的实体。

这里的 another 就是一个闭包,闭包本质上是一个函数,它有两部分组成,printer 函数和变量 msg。闭包使得这些变量的值始终保存在内存中。

闭包,顾名思义,就是一个封闭的包裹,里面包裹着自由变量,就像在类里面定义的属性值一样,自由变量的可见范围随同包裹,哪里可以访问到这个包裹,哪里就可以访问到这个自由变量。

为什么要使用闭包

闭包避免了使用全局变量,此外,闭包允许将函数与其所操作的某些数据(环境)关连起来。这一点与面向对象编程是非常类似的,在面对象编程中,对象允许我们将某些数据(对象的属性)与一个或者多个方法相关联。

一般来说,当对象中只有一个方法时,这时使用闭包是更好的选择。来看一个例子:

def adder(x):
    def wrapper(y):
        return x + y
    return wrapper
adder5 = adder(5)
# 输出 15
adder5(10)
# 输出 11
adder5(6)

这比用类来实现更优雅,此外装饰器也是基于闭包的一中应用场景。

所有函数都有一个 __closure__属性,如果这个函数是一个闭包的话,那么它返回的是一个由 cell 对象 组成的元组对象。cell 对象的cell_contents 属性就是闭包中的自由变量。

>>> adder.__closure__
>>> adder5.__closure__
(<cell at 0x103075910: int object at 0x7fd251604518>,)
>>> adder5.__closure__[0].cell_contents
5

这解释了为什么局部变量脱离函数之后,还可以在函数之外被访问的原因的,因为它存储在了闭包的 cell_contents中了。


目录
相关文章
|
11天前
|
存储 缓存 算法
Python闭包|你应该知道的常见用例(下)
Python闭包|你应该知道的常见用例(下)
13 1
Python闭包|你应该知道的常见用例(下)
|
15天前
|
自然语言处理 小程序 测试技术
Python闭包|你应该知道的常见用例(上)
Python闭包|你应该知道的常见用例(上)
16 3
Python闭包|你应该知道的常见用例(上)
|
4月前
|
监控 测试技术 Python
颠覆传统!Python闭包与装饰器的高级实战技巧,让你的项目效率翻倍
【7月更文挑战第7天】Python的闭包与装饰器是强大的工具。闭包是能记住外部作用域变量的内部函数,常用于动态函数创建和工厂模式。例如,`make_power`返回含外部变量`n`的`power`闭包。装饰器则允许在不修改函数代码的情况下添加新功能,如日志或性能监控。`my_decorator`函数接收一个函数并返回包装后的函数,添加了前后处理逻辑。掌握这两者,可提升编程效率和灵活性。
41 3
|
1月前
|
Python
深入理解Python中的闭包
深入理解Python中的闭包
18 0
|
4月前
|
存储 安全 Java
在python中使用闭包和其他惯例
【7月更文挑战第3天】本文介绍闭包基本概念和例子,内部函数访问外部变量,实现数据隐藏。以及 Python的惯用法:用`in`检查字典键,用`dict.get()`安全取值。
44 1
在python中使用闭包和其他惯例
|
3月前
|
数据安全/隐私保护 Python
Python闭包:函数定义的神秘力量!
Python闭包:函数定义的神秘力量!
54 0
|
4月前
|
程序员 Python
从零到一,彻底掌握Python闭包与装饰器的精髓,成为编程界的隐藏Boss
【7月更文挑战第7天】探索Python编程的两大基石:闭包与装饰器。闭包是内部函数记住外部作用域的变量,如`make_multiplier_of`返回的`multiplier`,它保持对`n`的引用。装饰器则是函数工厂,接收函数并返回新函数,如`my_decorator`,它在不改变原函数代码的情况下添加日志功能。掌握这些,让代码更优雅,效率更高,助你成为编程高手。
32 3
|
4月前
|
程序员 Python
程序员必看!Python闭包与装饰器的高级应用,让你的代码更优雅、更强大
【7月更文挑战第7天】Python中的闭包和装饰器是高级特性,用于增强代码功能。闭包是内部函数记住外部作用域的变量,常用于动态函数和函数工厂。示例展示了`make_multiplier_of`返回记住n值的`multiplier`闭包。装饰器则是接收函数并返回新函数的函数,用于不修改原函数代码就添加功能。`my_decorator`装饰器通过`@`语法应用到`say_hello`函数上,展示了在调用前后添加额外行为的能力。这两种技术能提升代码的优雅性和效率。
38 3
|
4月前
|
Python
Python编程实战:利用闭包与装饰器优化日志记录功能
【7月更文挑战第7天】Python的闭包和装饰器简化了日志记录。通过定义如`log_decorator`的装饰器,可以在不修改原函数代码的情况下添加日志功能。当@log_decorator用于`add(x, y)`函数时,调用时自动记录日志。进一步,`timestamp_log_decorator`展示了如何创建特定功能的装饰器,如添加时间戳。这些技术减少了代码冗余,提高了代码的可维护性。
63 1
|
4月前
|
Python
Python黑魔法揭秘:闭包与装饰器的高级玩法,让你代码飞起来
【7月更文挑战第7天】Python的闭包和装饰器是提升代码效率的神器。闭包是能记住外部作用域变量的内部函数,常用于动态函数创建。示例中,`make_multiplier_of`返回一个保留`n`值的闭包。装饰器则是一个接收函数并返回新函数的函数,用于在不修改原函数情况下添加功能,如日志或性能追踪。`@my_decorator`装饰的`say_hello`函数在执行时会自动加上额外操作。掌握这两者,能让Python代码更优雅、强大。**
33 1