Python黑魔法揭秘:闭包与装饰器的高级玩法,让你代码飞起来

简介: 【7月更文挑战第7天】Python的闭包和装饰器是提升代码效率的神器。闭包是能记住外部作用域变量的内部函数,常用于动态函数创建。示例中,`make_multiplier_of`返回一个保留`n`值的闭包。装饰器则是一个接收函数并返回新函数的函数,用于在不修改原函数情况下添加功能,如日志或性能追踪。`@my_decorator`装饰的`say_hello`函数在执行时会自动加上额外操作。掌握这两者,能让Python代码更优雅、强大。**

在Python的广阔魔法世界里,闭包(Closures)与装饰器(Decorators)无疑是两大神秘而强大的存在。它们不仅能让代码更加优雅、简洁,还能极大地提升开发效率,让你的代码如虎添翼,真正“飞起来”。

首先,让我们揭开闭包的面纱。闭包,简单来说,就是一个能记住并访问其所在作用域中变量的函数。即使这个函数已经在其作用域之外执行,它依然能够访问和修改那些变量。闭包的这一特性,使得它在创建动态函数、实现函数工厂等方面有着广泛的应用。

python
def make_multiplier_of(n):
def multiplier(x):
return x * n
return multiplier

times3 = make_multiplier_of(3)
times5 = make_multiplier_of(5)

print(times3(9)) # 输出: 27
print(times5(3)) # 输出: 15
print(times3(times5(2))) # 输出: 30
在上述代码中,make_multiplier_of函数返回了一个闭包multiplier,这个闭包记住了make_multiplier_of函数的作用域中的n变量。因此,无论我们何时调用times3或times5,它们都能正确地访问到n的值,并据此计算出结果。

接下来,我们聊聊装饰器。装饰器,本质上是一个接受函数作为参数并返回一个新函数的函数。它的作用是在不修改原有函数代码的前提下,为函数添加新的功能。这在实际开发中,尤其是需要为大量函数添加相同功能(如日志记录、性能测量等)时,显得尤为有用。

python
def my_decorator(func):
def wrapper():
print("Something is happening before the function is called.")
func()
print("Something is happening after the function is called.")
return wrapper

@my_decorator
def say_hello():
print("Hello!")

say_hello()

输出:

Something is happening before the function is called.

Hello!

Something is happening after the function is called.

在这个例子中,my_decorator是一个装饰器,它接受一个函数func作为参数,并返回了一个新的函数wrapper。wrapper函数在调用原始函数func的前后,分别添加了一些额外的操作。通过@my_decorator语法,我们将say_hello函数“装饰”了一番,使得它在被调用时,会自动执行那些额外的操作。

闭包与装饰器,作为Python中的高级特性,它们不仅仅是一种语法糖,更是提升代码质量、实现复杂功能的利器。掌握了它们,你就能在Python的编程之路上,更加游刃有余,让你的代码真正地“飞起来”。

相关文章
|
2月前
|
测试技术 数据库 Python
Python装饰器实战:打造高效性能计时工具
在数据分析中,处理大规模数据时,分析代码性能至关重要。本文介绍如何使用Python装饰器实现性能计时工具,在不改变现有代码的基础上,方便快速地测试函数执行时间。该方法具有侵入性小、复用性强、灵活度高等优点,有助于快速发现性能瓶颈并优化代码。通过设置循环次数参数,可以更准确地评估函数的平均执行时间,提升开发效率。
119 61
Python装饰器实战:打造高效性能计时工具
|
2月前
|
设计模式 前端开发 Shell
Python装饰器是什么?
装饰器是Python中用于动态修改函数、方法或类功能的工具,无需改变原代码。通过将函数作为参数传递并返回新函数,装饰器可以在原函数执行前后添加额外逻辑。例如,使用`@logger`装饰器可以打印函数调用日志,而`@timethis`则可用于计算函数执行时间。为了保持被装饰函数的元信息(如`__name__`和`__doc__`),可使用`functools.wraps`装饰器。此外,带参数的装饰器可通过嵌套函数实现,如`@timeitS(2)`,以根据参数条件输出特定信息。
93 59
|
14天前
|
数据采集 供应链 API
实战指南:通过1688开放平台API获取商品详情数据(附Python代码及避坑指南)
1688作为国内最大的B2B供应链平台,其API为企业提供合法合规的JSON数据源,直接获取批发价、SKU库存等核心数据。相比爬虫方案,官方API避免了反爬严格、数据缺失和法律风险等问题。企业接入1688商品API需完成资质认证、创建应用、签名机制解析及调用接口四步。应用场景包括智能采购系统、供应商评估模型和跨境选品分析。提供高频问题解决方案及安全合规实践,确保数据安全与合法使用。立即访问1688开放平台,解锁B2B数据宝藏!
|
15天前
|
API 开发工具 Python
【Azure Developer】编写Python SDK代码实现从China Azure中VM Disk中创建磁盘快照Snapshot
本文介绍如何使用Python SDK为中国区微软云(China Azure)中的虚拟机磁盘创建快照。通过Azure Python SDK的Snapshot Class,指定`location`和`creation_data`参数,使用`Copy`选项从现有磁盘创建快照。代码示例展示了如何配置Default Azure Credential,并设置特定于中国区Azure的`base_url`和`credential_scopes`。参考资料包括官方文档和相关API说明。
|
2月前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
82 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
3月前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
89 33
|
3月前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
61 10
|
3月前
|
缓存 数据安全/隐私保护 Python
python装饰器底层原理
Python装饰器是一个强大的工具,可以在不修改原始函数代码的情况下,动态地增加功能。理解装饰器的底层原理,包括函数是对象、闭包和高阶函数,可以帮助我们更好地使用和编写装饰器。无论是用于日志记录、权限验证还是缓存,装饰器都可以显著提高代码的可维护性和复用性。
58 5
|
3月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
125 8
|
程序员 Python
笨办法学 Python · 续 第二部分:简单的黑魔法
第二部分:简单的黑魔法 原文:Part II: Quick Hacks 译者:飞龙 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 你有最好的想法,你会打动世界!你会成为一个亿万富豪!你的大脑与这个概念融为一体,你会在你的梦想中看到它,它像幽灵一样困扰着你。
1484 0

热门文章

最新文章