什么是机器学习(五分钟带你了解人工智能,机器学习,深度学习)

简介: 什么是机器学习(五分钟带你了解人工智能,机器学习,深度学习)

目录


机器学习的含义

概念

机器学习,人工智能,深度学习的关系

机器学习是什么

机器学习的基本思路

机器学习三要素

机器学习训练方法分类

监督学习

非监督学习

强化学习

降维

直觉在高维空间中失效

泛化

机器学习实操的7个步骤

机器学习的难点

总结


正文


机器学习的含义


概念


机器学习研究和构建的是一种特殊算法(而非某一个特定的算法),能够让计算机自己在数据中学习从而进行预测。

所以,机器学习不是某种具体的算法,而是很多算法的统称。


机器学习,人工智能,深度学习的关系


深度学习的灵感来自大脑的结构和功能,即许多神经元的互连。人工神经网络(ANN)是模拟大脑生物结构的算法。

不管是机器学习还是深度学习,都属于人工智能(AI)的范畴。所以人工智能、机器学习、深度学习可以用下面的图来表示:

2.png


机器学习是什么


机器学习的基本思路


1.把现实生活中的问题抽象成数学模型,并且很清楚模型中不同参数的作用

2.利用数学方法对这个数学模型进行求解,从而解决现实生活中的问题

3.评估这个数学模型,是否真正的解决了现实生活中的问题,解决的如何?


机器学习三要素


数据、算法、模型

机器学习研究的是从数据中通过选取合适的算法,自动的归纳逻辑或规则,并根据这个归纳的结果(模型)与新数据来进行预测。


机器学习训练方法分类


监督学习


监督学习的数据比较特殊,举个栗子,比如你在中学学习英语,在老师的帮助下练习英语发音,数据是你的发音和这个发音的对错/准确程度(对错/准确程度是老师告诉你的),然后算法就是你去尝试去模拟数据(发音)的规律,不断根据英语单词的拼写规律来学习发音,最终你学习到了基于拼写及句子的上下文调整发音。


非监督学习


无监督学习的数据中没有人告诉你对错信息,举个栗子,今天老师给你了一个碗,里面有黑米有红米,让你对这个碗里的米分个类,你可能根据颜色分类,也可能根据大小、重要分类,都没有问题,因为老师没说按什么分,对不对这个问题。


强化学习


强化学习更接近生物学习的本质,因此有望获得更高的智能。它关注的是智能体如何在环境中采取一系列行为,从而获得最大的累积回报。通过强化学习,一个智能体应该知道在什么状态下应该采取什么行为。


降维


直觉在高维空间中失效


机器学习中最大的问题是 维数的诅咒。这意味着如果输入是高维的,许多在低维度下正常工作的算法会变得难以处理。由于固定大小的训练集只覆盖了输入空间的一小部分(可能的组合变得巨大),因此随着样本 维度(即特征的数量) 的增长,正确泛化的难度呈指数增加。但这就是机器学习既有必要又有困难的原因。如下图所示,即使从 1-D 过渡到 3-D,分辨出不同样本的工作似乎开始变得越来越难——在高维度上,所有的样本看起来都是一样的。

4.png

这里的问题是,来自三维世界的直觉在高维度上失效。例如高维的橘子,大部分体积都在果皮里,而不是果肉里!


难以置信的是:如果固定数量的样本在高维超立方中均匀分布,并且,如果我们通过将其嵌入超立方中来近似超球面,那么在高维空间中,超立方体的几乎所有体积都在超球体之外。这是个坏消息,因为在机器学习中,一种类型的形状常常通过另一种类型的形状近似。


注意:你可能已经被所有这些“超(hyper)”给弄糊涂了,超立方内部的超球面在二维和三维空间中看起来会像下面这样:

3.png

因此,现在可以理解,构建 2 维或 3 维的分类器很容易。但在高维度上,很难理解发生了什么。反过来,这让设计好的分类器变得困难。事实上,我们经常陷入这样的陷阱:认为收集更多的特征永远不会有害,因为在最坏的情况下,它们不会提供关于类的新信息。但事实上,维度的诅咒带来的问题会超过它们的好处。


建议:下次当考虑添加更多特征时,请考虑当维度变得太大时可能带来的潜在问题。


泛化


泛化就是你学到的规则/模型的普适程度。

举个栗子吧,今天老师让你看了20个西瓜,并告诉你熟不熟,然后给你一个西瓜,问你只看外观,这个西瓜熟不熟,你可能根据以下来判断:

可能你是这么做的:看表皮,你发现20个瓜里面,瓜皮表面光滑、花纹清晰、纹路明显、底面发黄的瓜都是熟的,但是不满足任何一个条件的都是不熟的。

所以你学到的模型如下:如果瓜皮表面光滑、花纹清晰、纹路明显、底面发黄的,就说明是熟瓜;其它的是不熟的瓜。

但是其实有时候,纹路不明显,但其他条件满足的时候也会有一部分是熟的瓜。所以你学到的模型具有一定泛化性能,但不具有很高的泛化性能。


机器学习实操的7个步骤


1.收集数据

2.数据准备(涉及数据清洗等工作)

3.选择一个模型

4.训练

5.评估

6.参数调整

7.预测(开始使用)


机器学习的难点


如果你思考一遍上述流程, 你可能发现一切都很容易, 从数据清洗,特征提取,到模型选择, 事实上这你就错了。 因为机器学习最难的一步 , 这里根本就没提到, 那就是把现实生产生活中的问题, 提炼成一个机器学习问题 。这需要的是你对问题本身的深刻洞察。 有一天也许整个数据清洗到模型选择和交叉验证都自动化了。但始终有一个东西不能完全被机器搞定, 那就是你如何从一个全新的领域, 去提取机器学习可以有助解决的最重要的问题。再有, 无论机器的预测多准确, 它的结果如果不是在解答人的需求, 也是一个没用的或至少不令人喜欢的东西。 比如我发明一个算法能够特别准的预测老人的寿命, 或者根据女生现在的长相推测她80岁的长相, 即使算法十分牛掰, 这样的产品估计也不是客户喜闻乐见的。


总结


我认为机器学习就是AI人工智能的一个关键技能,对准人工智能三大研究内容之一——计算机模仿人类思考(另外两个是对环境的感知和动作的实现)。而机器学习中,除了上述难点外,我认为最重要的是数据的收集与模型的选择,网络上大部分言辞都是偏向于数据收集更重要,但我觉得二者缺一不可,只是现在各类模型已然非常完备,而数据是要从零去收集,相较而言,数据收集确实需要我们花费更多的时间精力去收集。

相关文章
|
5天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
30 3
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:探索未来的技术边界
【10月更文挑战第18天】 在这篇文章中,我们将深入探讨人工智能(AI)和机器学习(ML)的基础知识、应用领域以及未来趋势。通过对比分析,我们将揭示这些技术如何改变我们的生活和工作方式,并预测它们在未来可能带来的影响。文章旨在为读者提供一个全面而深入的理解,帮助他们更好地把握这一领域的发展趋势。
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的深度学习与自然语言处理前沿
【10月更文挑战第10天】探索人工智能的深度学习与自然语言处理前沿
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能与机器学习的边界####
本文深入探讨了人工智能(AI)与机器学习(ML)领域的最新进展,重点分析了深度学习技术如何推动AI的边界不断扩展。通过具体案例研究,揭示了这些技术在图像识别、自然语言处理和自动驾驶等领域的应用现状及未来趋势。同时,文章还讨论了当前面临的挑战,如数据隐私、算法偏见和可解释性问题,并提出了相应的解决策略。 ####
|
8天前
|
机器学习/深度学习 人工智能 物联网
深度学习:物联网大数据洞察中的人工智能
深度学习:物联网大数据洞察中的人工智能
|
11天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
32 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
23天前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
54 2
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习:解锁人工智能的无限潜能
本文深入探讨了深度学习这一革命性技术如何推动人工智能领域的发展。通过分析其基本原理、关键技术里程碑以及在多个行业中的应用案例,揭示了深度学习如何成为现代科技发展的核心驱动力。文章旨在为读者提供一个全面而深入的理解框架,展示深度学习不仅仅是一种技术趋势,更是未来创新与变革的关键所在。
|
19天前
|
机器学习/深度学习 自然语言处理 算法
机器学习和深度学习之间的区别
机器学习和深度学习在实际应用中各有优势和局限性。机器学习适用于一些数据量较小、问题相对简单、对模型解释性要求较高的场景;而深度学习则在处理大规模、复杂的数据和任务时表现出色,但需要更多的计算资源和数据,并且模型的解释性较差。在实际应用中,需要根据具体的问题和需求,结合两者的优势,选择合适的方法来解决问题。
46 0
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
浅谈机器学习与深度学习的区别
浅谈机器学习与深度学习的区别
42 0