人工智能实践 | VGG-16迁移模型

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,5000CU*H 3个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 传统的机器学习训练模型需要大量的标签数据,而且每一个模型是为了解决特定任务设计的,所以当面对全新领域问题就显得无能为力,因此采用迁移学习来解决不同领域之间知识迁移问题,能达到“举一反三”的作用,使学习性能显著提高。

640.jpg

1、VGG-16结构

VGG-16共包括13个卷积层、3个全连接层、5个池化层,卷积层与全连接层具有权重系数,而池化层不涉及权重,因此这就是VGG-16的来源,如图1所示。

640.png


■ 图1 VGG-16模型结构图

我们保留VGG-16的卷积层,修改全连接层,将其迁移到与图片分类不同的领域,实现动物体长的识别。

2、迁移学习过程

首先,获取想要进行训练的数据集,本实验采用1000个分类中的猫和老虎的数据。然后,自定义设置猫和老虎的体长参数,如图2所示。

640.png


■ 图2 猫和虎的体长数据分布

利用VGG-16训练好的model parameters,然后保留Convolution和pooling层,修改fullyconnected层,使其变为可以被训练的两层结构,最终输出数字代表猫和老虎的体长。

640.png


self.flatten之前的layers都是不能被训练的. 而 tf.layers.dense() 建立的layers是可以被训练的. 训练成功之后, 再定义一个Saver来保存由 tf.layers.dense()建立的parameters。

640.png


训练好后的VGG-16的Convolution相当于一个feature extractor,提取或压缩图片的特征,这些特征用作训练regressor,即softmax。

6725c8f50cdd67bd5d099521f0297f0b.png


至此,迁移学习已经完成,进行测试。

3、迁移学习结果

通过传入两张分别为猫和虎的图片,应用迁移学习给出各自体长结果,如图3所示。

640.png


■ 图3 迁移学习模型输出结果

实践示例程序参见附录。

附录E VGG-16迁移学习

import os
import numpy as np
import tensorflow as tf
import skimage.io
import skimage.transform
import matplotlib.pyplot as plt

def load_img(path):
    img = skimage.io.imread(path)
    img = img / 255.0
    # print "Original Image Shape: ", img.shape
    # we crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    # resize to 224, 224
    resized_img = skimage.transform.resize(crop_img, (224, 224))[None, :, :, :] # shape [1, 224, 224, 3]
    return resized_img

def load_data():
    imgs = {'tiger': [], 'kittycat': []}
    for k in imgs.keys():
        dir = './for_transfer_learning/data/' + k
        for file in os.listdir(dir):
            if not file.lower().endswith('.jpg'):
                continue
            try:
                resized_img = load_img(os.path.join(dir, file))
            except OSError:
                continue
            imgs[k].append(resized_img) # [1, height, width, depth] * n
            if len(imgs[k]) == 400: # only use 400 imgs to reduce my memory load
                break
    # fake length data for tiger and cat
    tigers_y = np.maximum(20, np.random.randn(len(imgs['tiger']), 1) * 30 + 100)
    cat_y = np.maximum(10, np.random.randn(len(imgs['kittycat']), 1) * 8 + 40)
    return imgs['tiger'], imgs['kittycat'], tigers_y, cat_y


class Vgg16:
    vgg_mean = [103.939, 116.779, 123.68]

    def __init__(self, vgg16_npy_path=None, restore_from=None):
        # pre-trained parameters
        try:
            self.data_dict = np.load(vgg16_npy_path,allow_pickle=True, encoding='latin1').item()
        except FileNotFoundError:
            print('请下载')
        self.tfx = tf.placeholder(tf.float32, [None, 224, 224, 3])
        self.tfy = tf.placeholder(tf.float32, [None, 1])

        # Convert RGB to BGR
        red, green, blue = tf.split(axis=3, num_or_size_splits=3, value=self.tfx * 255.0)
        bgr = tf.concat(axis=3, values=[
            blue - self.vgg_mean[0],
            green - self.vgg_mean[1],
            red - self.vgg_mean[2],
        ])

        # pre-trained VGG layers are fixed in fine-tune
        conv1_1 = self.conv_layer(bgr, "conv1_1")
        conv1_2 = self.conv_layer(conv1_1, "conv1_2")
        pool1 = self.max_pool(conv1_2, 'pool1')

        conv2_1 = self.conv_layer(pool1, "conv2_1")
        conv2_2 = self.conv_layer(conv2_1, "conv2_2")
        pool2 = self.max_pool(conv2_2, 'pool2')

        conv3_1 = self.conv_layer(pool2, "conv3_1")
        conv3_2 = self.conv_layer(conv3_1, "conv3_2")
        conv3_3 = self.conv_layer(conv3_2, "conv3_3")
        pool3 = self.max_pool(conv3_3, 'pool3')

        conv4_1 = self.conv_layer(pool3, "conv4_1")
        conv4_2 = self.conv_layer(conv4_1, "conv4_2")
        conv4_3 = self.conv_layer(conv4_2, "conv4_3")
        pool4 = self.max_pool(conv4_3, 'pool4')

        conv5_1 = self.conv_layer(pool4, "conv5_1")
        conv5_2 = self.conv_layer(conv5_1, "conv5_2")
        conv5_3 = self.conv_layer(conv5_2, "conv5_3")
        pool5 = self.max_pool(conv5_3, 'pool5')

        # detach original VGG fc layers and
        # reconstruct your own fc layers serve for your own purpose
        self.flatten = tf.reshape(pool5, [-1, 7 * 7 * 512])
        self.fc6 = tf.layers.dense(self.flatten, 256, tf.nn.relu, name='fc6')
        self.out = tf.layers.dense(self.fc6, 1, name='out')

        self.sess = tf.Session()
        if restore_from:
            saver = tf.train.Saver()
            saver.restore(self.sess, restore_from)
        else:  # training graph
            self.loss = tf.losses.mean_squared_error(labels=self.tfy, predictions=self.out)
            self.train_op = tf.train.RMSPropOptimizer(0.001).minimize(self.loss)
            self.sess.run(tf.global_variables_initializer())

    def max_pool(self, bottom, name):
        return tf.nn.max_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)

    def conv_layer(self, bottom, name):
        with tf.variable_scope(name): # CNN's filter is constant, NOT Variable that can be trained
            conv = tf.nn.conv2d(bottom, self.data_dict[name][0], [1, 1, 1, 1], padding='SAME')
            lout = tf.nn.relu(tf.nn.bias_add(conv, self.data_dict[name][1]))
            return lout

    def train(self, x, y):
        loss, _ = self.sess.run([self.loss, self.train_op], {self.tfx: x, self.tfy: y})
        return loss

    def predict(self, paths):
        fig, axs = plt.subplots(1, 2)
        for i, path in enumerate(paths):
            x = load_img(path)
            length = self.sess.run(self.out, {self.tfx: x})
            axs[i].imshow(x[0])
            axs[i].set_title('Len: %.1f cm' % length)
            axs[i].set_xticks(());
            axs[i].set_yticks(())
        plt.show()

    def save(self, path='./for_transfer_learning/model/transfer_learn'):
        saver = tf.train.Saver()
        saver.save(self.sess, path, write_meta_graph=False)

def train():
    tigers_x, cats_x, tigers_y, cats_y = load_data()

    # plot fake length distribution
    plt.hist(tigers_y, bins=20, label='Tigers')
    plt.hist(cats_y, bins=10, label='Cats')
    plt.legend()
    plt.xlabel('length')
    plt.show()

    xs = np.concatenate(tigers_x + cats_x, axis=0)
    ys = np.concatenate((tigers_y, cats_y), axis=0)

    vgg = Vgg16(vgg16_npy_path='./for_transfer_learning/vgg16.npy')
    print('Net built')
    for i in range(100):
        b_idx = np.random.randint(0, len(xs), 6)
        train_loss = vgg.train(xs[b_idx], ys[b_idx])
        print(i, 'train loss: ', train_loss)

    vgg.save('./for_transfer_learning/model/transfer_learn') # save learned fc layers

def eval():
    vgg = Vgg16(vgg16_npy_path='./for_transfer_learning/vgg16.npy',
                restore_from='./for_transfer_learning/model/transfer_learn')
    vgg.predict(
        ['./for_transfer_learning/data/kittycat/23066047.d6694f.jpg', './for_transfer_learning/data/tiger/37425296_58a9896259.jpg'])

if __name__ == '__main__':
    # download()
     #train()
    eval()
目录
相关文章
|
7天前
|
人工智能 自然语言处理 API
人工智能大模型之开源大语言模型汇总(国内外开源项目模型汇总)
人工智能大模型之开源大语言模型汇总(国内外开源项目模型汇总)
人工智能大模型之开源大语言模型汇总(国内外开源项目模型汇总)
|
17天前
|
机器学习/深度学习 人工智能 分布式计算
人工智能平台PAI产品使用合集之在maxcompute上跑模型,如何在本地进行推理
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
人工智能平台PAI产品使用合集之在maxcompute上跑模型,如何在本地进行推理
|
6天前
|
人工智能 数据挖掘 大数据
538个代码示例!麻省理工教授的Python程序设计+人工智能案例实践
Python简单易学,且提供了丰富的第三方库,可以用较少的代码完成较多的工作,使开发者能够专注于如何解决问题而只花较少的时间去考虑如何编程。 此外,Python还具有免费开源、跨平台、面向对象、胶水语言等优点,在系统编程、图形界面开发、科学计算、Web开发、数据分析、人工智能等方面有广泛应用。 尤其是在数据分析和人工智能方面,Python已成为最受开发者欢迎的编程语言之一,不仅大量计算机专业人员选择使用Python进行快速开发,许多非计算机专业人员也纷纷选择Python语言来解决专业问题。 由于Python应用广泛,关于Python的参考书目前已经有很多,但将Python编程与数据分析、人工智
|
3天前
|
机器学习/深度学习 数据采集 人工智能
人工智能:构建自定义机器学习模型的步骤与技巧
【6月更文挑战第25天】构建自定义机器学习模型涉及明确问题、数据收集预处理、特征工程、模型选择训练、评估优化及部署监控。关键技巧包括选择适配的算法、重视数据预处理、精巧的特征工程、有效评估优化和适时的模型更新。通过这些步骤和技巧,可提升模型性能与泛化能力。
|
9天前
|
人工智能 自然语言处理 机器人
【AIGC】大型语言模型在人工智能规划领域模型生成中的探索
【AIGC】大型语言模型在人工智能规划领域模型生成中的探索
36 6
|
8天前
|
传感器 机器学习/深度学习 人工智能
多模态大模型代表了人工智能领域的新一代技术范式
多模态大模型代表了人工智能领域的新一代技术范式
13 2
|
11天前
|
人工智能
人工智能大模型——零样本提示
**零样本提示**是向LLM如ChatGPT提问时不提供示例的方式,适用于目标明确、问题简单和答案固定的场景。例如,翻译请求或简单算术问题。在实践中,清晰、简洁的提示能获得更好响应。案例展示包括翻译和定义解释,ChatGPT能有效回应。理解其应用和技巧的同时,也应注意其对复杂情境理解的限制。
19 3
|
17天前
|
机器学习/深度学习 人工智能 PyTorch
人工智能平台PAI产品使用合集之Alink是否加载预训练好的pytorch模型
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
17天前
|
机器学习/深度学习 人工智能 分布式计算
人工智能平台PAI产品使用合集之如何删除oss路径上特定的模型
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
17天前
|
机器学习/深度学习 人工智能 网络安全
人工智能平台PAI产品使用合集之在本地可以成功进入模型流,但在服务器上无法进入,是什么原因
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。