#!/usr/bin/env python
# -*- coding:utf-8 -*-
__author__ = 'shouke'
import random
def get_class_instance_by_proportion(class_proportion_dict, amount):
"""
根据每种分类的样本数比例,及样本总数,为每每种分类构造样本数据
class_proportion_dict: 包含分类及其分类样本数占比的字典:{"分类(id)": 分类样本数比例}
amount: 所有分类的样本数量总和
返回一个列表:包含所有分类样本的list
"""
bucket = []
proportion_sum = sum ([weight for group_id, weight in class_proportion_dict.items()])
residuals = {} # 存放每种分类的样本数计算差值
for class_id, weight in class_proportion_dict.items():
percent = weight / float (proportion_sum)
class_instance_num = int ( round (amount * percent))
bucket.extend([class_id for x in range (class_instance_num)])
residuals[class_id] = amount * percent - round (amount * percent)
if len (bucket) < amount:
# 计算获取的分类样本总数小于给定的分类样本总数,则需要增加分类样本数,优先给样本数计算差值较小的分类增加样本数,每种分类样本数+1,直到满足数量为止
for class_id in [l for l, r in sorted (residuals.items(), key = lambda x: x[ 1 ], reverse = True )][: amount - len (bucket)]:
bucket.append(class_id)
elif len (bucket) > amount:
# # 计算获取的分类样本总数大于给定的分类样本总数,则需要减少分类样本数,优先给样本数计算差值较大的分类减少样本数,每种分类样本数-1,直到满足数量为止
for class_id in [l for l, r in sorted (residuals.items(), key = lambda x: x[ 1 ])][: len (bucket) - amount]:
bucket.remove(class_id)
return bucket
class A:
def to_string( self ):
print ( 'A class instance' )
class B:
def to_string( self ):
print ( 'B class instance' )
class C:
def to_string( self ):
print ( 'C class instance' )
class D:
def to_string( self ):
print ( 'D class instance' )
classes_map = { 1 : A, 2 : B, 3 :C, 4 : D}
class_proportion_dict = { 1 : 3 , 2 : 5 , 3 : 7 , 4 : 9 } # {分类id: 样本数比例} ,即期望4个分类的样本数比例为为 3:5:7:9
class_instance_num = 1000 # 样本总数
result_list = get_class_instance_by_proportion(class_proportion_dict, class_instance_num)
for class_id in class_proportion_dict:
print ( '%s %s' % (classes_map[class_id], result_list.count(class_id)))
# 制造样本并随机获取样本
random.shuffle(result_list)
while result_list:
class_id = random.sample(result_list, 1 )[ 0 ]
classes_map[class_id]().to_string()
result_list.remove(class_id)
|