“二分”带来“十分”快感——二分思想的奥秘解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 二分查找是一种非常简单易懂的快速查找算法,生活中到处可见。比如说,我们现在来做一个猜字游戏。我随机写一个0到99之间的数字,然后你来猜我写的是什么。猜的过程中,你每猜一次,我就会告诉你猜的大了还是小了,直到猜中为止。你来想想,如何快速猜中我写的数字呢?

@[toc]
在这里插入图片描述

🐱‍🐉作者简介:大家好,我是黑洞晓威,一名大二学生,希望和大家一起进步。
👿本文收录于 算法,本专栏是针对大学生、初学算法的人准备,解析常见的数据结构与算法,同时备战蓝桥杯。

无处不在的二分思想

二分查找是一种非常简单易懂的快速查找算法,生活中到处可见。比如说,我们现在来做一个猜字游戏。我随机写一个0到99之间的数字,然后你来猜我写的是什么。猜的过程中,你每猜一次,我就会告诉你猜的大了还是小了,直到猜中为止。你来想想,如何快速猜中我写的数字呢?

假设我写的数字是23,你可以按照下面的步骤来试一试。(如果猜测范围的数字有偶数个,中间数有两个,就选择较小的那个。)

在这里插入图片描述

7次就猜出来了,是不是很快?这个例子用的就是二分思想,按照这个思想,即便我让你猜的是0到999的数字,最多也只要10次就能猜中。不信的话,你可以试一试。

在这里插入图片描述

看懂这两个例子,你现在对二分的思想应该掌握得妥妥的了。我这里稍微总结升华一下, 二分查找针对的是一个有序的数据集合,查找思想有点类似分治思想。每次都通过跟区间的中间元素对比,将待查找的区间缩小为之前的一半,直到找到要查找的元素,或者区间被缩小为0

二分查找惊人的查找速度

二分查找是一种非常高效的查找算法,高效到什么程度呢?我们来分析一下它的时间复杂度。

我们假设数据大小是n,每次查找后数据都会缩小为原来的一半,也就是会除以2。最坏情况下,直到查找区间被缩小为空,才停止。

在这里插入图片描述

可以看出来,这是一个等比数列。其中n/2k=1时,k的值就是总共缩小的次数。而每一次缩小操作只涉及两个数据的大小比较,所以,经过了k次区间缩小操作,时间复杂度就是O(k)。通过n/2k=1,我们可以求得k=log2n,所以时间复杂度就是O(logn)。

因为logn是一个非常“恐怖”的数量级,即便n非常非常大,对应的logn也很小。比如n等于2的32次方,这个数很大了吧?大约是42亿。也就是说,如果我们在42亿个数据中用二分查找一个数据,最多需要比较32次。

二分查找的递归与非递归实现

实际上,简单的二分查找并不难写,注意我这里的“简单”二字。讲到二分查找的变体问题,那才是真正烧脑的。今天,我们来看如何来写最简单的二分查找。

最简单的情况 就是 有序数组中不存在重复元素,我们在其中用二分查找值等于给定值的数据。我用Java代码实现了一个最简单的二分查找算法。

public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;

  while (low <= high) {
    int mid = (low + high) / 2;
    if (a[mid] == value) {
      return mid;
    } else if (a[mid] < value) {
      low = mid + 1;
    } else {
      high = mid - 1;
    }
  }
  return -1;
}

这个代码我稍微解释一下,low、high、mid都是指数组下标,其中low和high表示当前查找的区间范围,初始low=0, high=n-1。mid表示[low, high]的中间位置。我们通过对比a[mid]与value的大小,来更新接下来要查找的区间范围,直到找到或者区间缩小为0,就退出。如果你有一些编程基础,看懂这些应该不成问题。现在,我就着重强调一下 容易出错的3个地方

1.循环退出条件

注意是low<=high,而不是low<high。

2.mid的取值

实际上,mid=(low+high)/2这种写法是有问题的。因为如果low和high比较大的话,两者之和就有可能会溢出。改进的方法是将mid的计算方式写成low+(high-low)/2。更进一步,如果要将性能优化到极致的话,我们可以将这里的除以2操作转化成位运算low+((high-low)>>1)。因为相比除法运算来说,计算机处理位运算要快得多。

3.low和high的更新

low=mid+1,high=mid-1。注意这里的+1和-1,如果直接写成low=mid或者high=mid,就可能会发生死循环。比如,当high=3,low=3时,如果a[3]不等于value,就会导致一直循环不退出。

如果你留意我刚讲的这三点,我想一个简单的二分查找你已经可以实现了。 实际上,二分查找除了用循环来实现,还可以用递归来实现,过程也非常简单。

我用Java语言实现了一下这个过程,正好你可以借此机会回顾一下写递归代码的技巧。

// 二分查找的递归实现
public int bsearch(int[] a, int n, int val) {
  return bsearchInternally(a, 0, n - 1, val);
}

private int bsearchInternally(int[] a, int low, int high, int value) {
  if (low > high) return -1;

  int mid =  low + ((high - low) >> 1);
  if (a[mid] == value) {
    return mid;
  } else if (a[mid] < value) {
    return bsearchInternally(a, mid+1, high, value);
  } else {
    return bsearchInternally(a, low, mid-1, value);
  }
}

最后说一句

感谢大家的阅读,文章通过网络资源与自己的学习过程整理出来,希望能帮助到大家。

才疏学浅,难免会有纰漏,如果你发现了错误的地方,可以提出来,我会对其加以修改。

在这里插入图片描述

相关文章
|
4月前
|
存储 算法 Python
震撼!Python算法设计与分析,分治法、贪心、动态规划...这些经典算法如何改变你的编程世界!
【7月更文挑战第9天】在Python的算法天地,分治、贪心、动态规划三巨头揭示了解题的智慧。分治如归并排序,将大问题拆解为小部分解决;贪心算法以局部最优求全局,如Prim的最小生成树;动态规划通过存储子问题解避免重复计算,如斐波那契数列。掌握这些,将重塑你的编程思维,点亮技术之路。
70 1
|
5月前
|
存储
初阶编程题积累(3)——最接近的三数之和(题目描述、示例、题目思路、题解、解析)
初阶编程题积累(3)——最接近的三数之和(题目描述、示例、题目思路、题解、解析)
32 0
|
6月前
|
算法 Java
数据结构奇妙旅程之二叉树题型解法总结
数据结构奇妙旅程之二叉树题型解法总结
2022 数据结构与算法《王道》学习笔记 (十一)KMP算法 详细归纳总结 改进的模式匹配算法
2022 数据结构与算法《王道》学习笔记 (十一)KMP算法 详细归纳总结 改进的模式匹配算法
2022 数据结构与算法《王道》学习笔记 (十一)KMP算法 详细归纳总结 改进的模式匹配算法
快乐学算法or二分查找深度刨析
快乐学算法or二分查找深度刨析
|
算法 前端开发
【算法之路】🤦‍♂️ 吃透对称性递归 (四)
【算法之路】🤦‍♂️ 吃透对称性递归 (四)
100 0
【算法之路】🤦‍♂️ 吃透对称性递归 (四)
|
算法 前端开发
【算法之路】😎 吃透对称性递归 (二)
【算法之路】😎 吃透对称性递归 (二)
104 0
【算法之路】😎 吃透对称性递归 (二)
|
算法 前端开发
【算法之路】📝 吃透对称性递归 (六)
【算法之路】📝 吃透对称性递归 (六)
95 0
【算法之路】📝 吃透对称性递归 (六)
|
存储 算法 前端开发
【算法之路】😎 吃透对称性递归 (三)
【算法之路】😎 吃透对称性递归 (三)
121 0
【算法之路】😎 吃透对称性递归 (三)
|
算法 前端开发
【算法之路】✌ 吃透对称性递归 (五)
【算法之路】✌ 吃透对称性递归 (五)
99 0
【算法之路】✌ 吃透对称性递归 (五)