基于短时幅度谱估计方法的数字语音信号增强matlab仿真

简介: 基于短时幅度谱估计方法的数字语音信号增强matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

98c3a8a60885e0e637d792924e835313_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
88b345498473f75915c5b8a0af995199_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

    语音处理过程中受到各种各样噪声的干扰,不但降低了语音质量,而且还将使整个系统无法正常工作。因此,为了消除噪声干扰,在现代语音处理技术中,工业上一般采用语音增强技术来改善语音质量从而提高系统性能。基于短时幅度谱估计来研究语音增强,主要介绍了功率谱相减、维纳滤波法,并介绍了这几种语音增强方法的基本原理和实现方法。通过研究,我们得到在白噪声的条件下,这些语音增强方法具有很好的增强效果,可作为开发实用语音增强方法的基础。

2.1谱减法

  假定语音为平稳信号,而噪声和语音为加性信号且彼此不相关。此时带噪语音信号可表示为

914936a6934eb622f530adc082470541_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
4f24a18d95d2cc40156a222a9228c164_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    上式中,下标w表示加窗信号,*表示复共轭。可以根据观测数据估计,其余各项必须近似为统计均值。由于n(t)和s(t)独立,则互谱的统计均值为0。为了用傅立叶逆变换再现语音,还需要的相位,这里用表示。此时可借用带噪语音相位,即的相位来近似。因而则恢复的语音是估值的傅立叶反变换,如下所示:

e3396b88ed3c37a2b7a6ec0df6b9dd23_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.2 语音增强——维纳滤波

   设维纳滤波器的输入为含噪声的随机信号。期望输出与实际输出之间的差值为误差,对该误差求均方,即为均方误差。因此均方误差越小,噪声滤除效果就越好。为使均方误差最小,关键在于求冲激响应。如果能够满足维纳-霍夫方程,就可使维纳滤波器达到最佳。根据维纳-霍夫方程,最佳维纳滤波器的冲激响应,完全由输入自相关函数以及输入与期望输出的互相关函数 所决定。

868d61c2d752006c60e50a1f7ab9b756_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   这就是维纳滤波器(Wiener filter)。当信号x[n]和b[n]满足以上的假设条件时,维纳滤波的方法能够实现噪声抑制,并且不会引入很大的目标估计失真和背景残留噪声。所需要的功率谱和可以分别从时间序列x[n]与b[n]通过多帧平均得到。然而在实际中,目标信号和背景噪声都是非平稳的,也就是说,它们的功率谱会随着时间变化,即可以表示成时变函数和。因此,理想的情况是对每一帧信号的STFT采用不同的维纳滤波器进行滤波。在这里,我们考虑了平稳的背景噪声情况,时变的维纳滤波器可以表示成: 

58af57e15c87dc2bb54bf8c784b8031f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
2ed579c742334c776c1314d94895bffa_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   是对式做了压缩(开方)处理,所以谱减的一直效果不如维纳滤波方法。与谱减的另一个重要的区别是维纳滤波并不需要一个绝对的门限。由于噪声也是随机过程,因此这种估计只能建立在统计模型基础上。人耳感知对语音频谱分量的相位不敏感,因此目前的增强算法主要针对短时谱幅度。

3.MATLAB核心程序

overlap=FrameLen/2;
inc=FrameLen-overlap;            %帧移
x_frame=enframe(x,FrameLen,inc); %分帧
nf=size(x_frame,1);              % 帧数
win=hamming(FrameLen)';
x_window=[];
for k=1:nf
    x_row=x_frame(k,:).*win;     % 加窗
    x_window=[x_window;x_row];   
end
%对带噪语音进行DFT
y=fft(x_window');
ymag = abs(y);            
yphase = angle(y);                             
NNoise=23;                      %取噪音段(语音的初始段)帧数
MN=mean(ymag(:,1:NNoise)')';
PN=mean(ymag(:,1:NNoise)'.^2)'; %初始噪声功率谱均值
 
NoiseCounter=0;%连续噪声段长度
SmoothFactor=9;%噪声平滑因子
Alpha=0.95;    %语音平滑因子
SNRPre=ones(size(MN));
 
%维纳滤波
for k=1:nf
     if k<=NNoise 
        SpeechFlag=0;
        NoiseCounter=NNoise;
    else 
           NoiseMargin=3;
           HangOver=8;
           SpectralDist= 20*(log10(ymag(:,k))-log10(MN));
           SpectralDist(find(SpectralDist<0))=0;
           Dist=mean(SpectralDist); 
           if (Dist < NoiseMargin) 
            NoiseFlag=1; 
            NoiseCounter=NoiseCounter+1;
           else
            NoiseFlag=0;
            NoiseCounter=0;
           end 
           if (NoiseCounter > HangOver) 
           SpeechFlag=0;    
           else 
           SpeechFlag=1; 
           end 
     end
    
    if SpeechFlag==0 
        MN=(SmoothFactor*MN+ymag(:,k))/(SmoothFactor+1);      %更新噪声均值
        PN=(SmoothFactor*PN+(ymag(:,k).^2))/(1+SmoothFactor); %更新噪声功率
    end
相关文章
|
4天前
|
机器学习/深度学习 算法 机器人
基于QLearning强化学习的较大规模栅格地图机器人路径规划matlab仿真
本项目基于MATLAB 2022a,通过强化学习算法实现机器人在栅格地图中的路径规划。仿真结果显示了机器人从初始位置到目标位置的行驶动作序列(如“下下下下右右...”),并生成了详细的路径图。智能体通过Q-Learning算法与环境交互,根据奖励信号优化行为策略,最终学会最优路径。核心程序实现了效用值排序、状态转换及动作选择,并输出机器人行驶的动作序列和路径可视化图。
129 85
|
3天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
4天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
3天前
|
算法 Serverless
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
|
4天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
2天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
1天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
252 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
149 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
119 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码