基于PSO粒子群算法优化RBF网络的数据预测matlab仿真

简介: 基于PSO粒子群算法优化RBF网络的数据预测matlab仿真

1.算法描述

  1985年,Powell提出了多变量插值的径向基函数(RBF)方法。径向基函数是一个取值仅仅依赖于离原点距离的实值函数,也可以是到任意一点c的距离,c点称为中心点。任意满足上述特性的函数,都可以叫做径向基函数。一般使用欧氏距离计算距离中心点的距离(欧式径向基函数)。最常用的径向基函数是高斯核函数。RBF神经网络只有三层,即输入层、隐藏层、输出层。RBF网络的基本思想是:用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入矢量直接映射到隐空间,而不需要通过权连接。当RBF的中心点确定以后,这种映射关系也就确定了。而隐含层空间到输出空间的映射是线性的,即网络的输出是隐单元输出的线性加权和,此处的权即为网络可调参数。其中,隐含层的作用是把向量从低维度的p映射到高维度的h,这样低维度线性不可分的情况到高维度就可以变得线性可分了,主要就是核函数的思想。这样,网络由输入到输出的映射是非线性的,而网络输出对可调参数而言却又是线性的。网络的权就可由线性方程组直接解出,从而大大加快学习速度并避免局部极小问题。RBF神经网络的隐节点采用输入模式与中心向量的距离(如欧式距离)作为函数的自变量,并使用径向基函数(如Gaussian函数)作为激活函数。神经元的输入离径向基函数中心越远,神经元的激活程度就越低(高斯函数)。RBF网络的输出与部分调参数有关,譬如,一个wij值只影响一个yi的输出,RBF神经网络因此具有“局部映射”特性。

d8ea71cf17ff2ae1dfa395ebd156f621_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
f2b40d0e2d66704646b73831f5fb4b49_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  PSO中,每个优化问题的解都是搜索空间的一只鸟,我们称之为“粒子”。所有的粒子都有一个被优化的函数决定的适应值,每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。

   PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解,在每一次迭代中,粒子通过跟踪两个“极值”来更新自己。第一个就是粒子本身所找到的最优解,这个解叫做个体极值。另一个极值是整个种群目前找到的最优解,这个极值是全局机制。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。
    PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个“极值(pbest和gbest)”来更新自己。在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。

5f7232440e57fb2344dddb21e1d8600c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
5bfacff500944f7a93bb2fad20d36854_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

对于公式(1):

公式(1)中的第一部分称为记忆项,表示上次速度大小和方向的影响;
公式(1)中的第二部分称为自身认知项,是从当前点指向粒子自身最好点的一个矢量,表示粒子的动作来源于自己经验的部分;
公式(1)中的第三部分称为群体认知项,是一个从当前点指向种群最好点的矢量,反映了粒子间的协调合作和知识共享。粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。

706be5be587b28f884ab760599d8c602_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

综上所述,标准PSO算法流程:
初始化一群微粒(群体规模为N),包括随机位置和速度;
评价每个微粒的适应度;
对每个微粒,将其适应值与其经过的最好位置pbest作比较,如果较好,则将其作为当前的最好位置pbest;
对每个微粒,将其适应值与其经过的最好位置gbest作比较,如果较好,则将其作为当前的最好位置gbest;
根据公式(2)、(3)调整微粒的速度和位置;
未达到结束条件则转到第二步。
迭代终止条件根据具体问题一般选为最大迭代次数Gk或微粒群迄今为止搜索到的最优位置满足预定最小适应阈值。

2.仿真效果预览
matlab2022a仿真结果如下:

aee4233f8a7886e0a96aea57217ded74_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
939a6093542a3b611ae7d7f51c62bc25_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
e46bdbca5f60e52bb1414f7dc1fbab69_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

BsJ = 0;
 
%根据初始化的种群计算个体好坏,找出群体最优和个体最优
for s = 1:m
    indivi = pop(s,:);
    [indivi,BsJ] = func_obj(indivi,BsJ);
    Error(s) = BsJ;
end
 
[OderEr,IndexEr] = sort(Error);
Error;
Errorleast = OderEr(1);
for i = 1:m
    if Errorleast == Error(i)
        gbest = pop(i,:);
        break;
    end
end
ibest = pop;
 
 
for kg = 1:G
    kg
    for s = 1:m;
%个体有4%的变异概率        
        for j = 1:n
            for i = 1:m
                if rand(1)<0.04
                    pop(i,j) = rands(1);
                end
            end
        end
%r1,r2为粒子群算法参数        
        r1 = rand(1);
        r2 = rand(1);
 
%个体和速度更新        
        V(s,:) = w*V(s,:) + c1*r1*(ibest(s,:)-pop(s,:)) + c2*r2*(gbest-pop(s,:));
        pop(s,:) = pop(s,:) + 0.3*V(s,:);
        
        for j = 1:3
            if pop(s,j) < MinX(j)
                pop(s,j) = MinX(j);
            end
            if pop(s,j) > MaxX(j)
                pop(s,j) = MaxX(j);
            end
        end
        for j = 4:9
            if pop(s,j) < MinX(j)
                pop(s,j) = MinX(j);
            end
            if pop(s,j) > MaxX(j)
                pop(s,j) = MaxX(j);
            end
        end
        for j = 10:12
            if pop(s,j) < MinX(j)
                pop(s,j) = MinX(j);
            end
            if pop(s,j) > MaxX(j)
                pop(s,j) = MaxX(j);
            end
        end
 
%求更新后的每个个体适应度值        
        [pop(s,:),BsJ] = func_obj(pop(s,:),BsJ);
        error(s) = BsJ;
%根据适应度值对个体最优和群体最优进行更新        
        if error(s)<Error(s)
            ibest(s,:) = pop(s,:);
            Error(s) = error(s);
        end
        if error(s)<Errorleast
            gbest = pop(s,:);
            Errorleast = error(s);
        end
    end
    
    Best(kg) = Errorleast;
end
plot(Best,'-bs',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','r',...
    'MarkerFaceColor',[0.7,0.7,0.4]);
 
save net.mat gbest;
相关文章
|
1天前
|
算法 数据安全/隐私保护 索引
索引OFDM调制解调系统的matlab性能仿真
本文对m索引OFDM调制解调系统性能进行了仿真分析,增加了仿真图并配有语音讲解视频,使用Matlab2022a完成仿真,代码无水印。研究了OFDM-IM技术,通过激活不同子载波组合传输额外信息,提高频谱效率和降低PAPR。提出了OFDM联合子块索引调制技术(OFDM-JS-IM)和OFDM全索引方法(OFDM-AIM),并通过遗传算法优化子块查找表,有效提升系统性能。提供了核心MATLAB程序示例。
21 3
|
1天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
13天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
21天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
22天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
23天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
22天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
22天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
41 3
|
2月前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。