【OpenVI—视觉生产系列之视频插帧实战篇】几行代码,尽享流畅丝滑的视频观感

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
简介: 随着网络电视、手机等新媒体领域的快速发展,用户对于观看视频质量的要求也越来越高。当前市面上所广为传播的视频帧率大多仍然处于20~30fps,已经无法满足用户对于高清、流畅的体验追求。而视频插帧算法,能够有效实现多倍率的帧率提升,有效消除低帧率视频的卡顿感,让视频变得丝滑流畅。配合其它的视频增强算法,更是能够让低质量视频焕然一新,让观众享受到极致的播放和观看体验。

一、背景

  视频插帧算法,顾名思义,需要计算原始视频中相邻(多)帧间的运动关系,在相邻帧间插入符合逻辑的中间帧,使中间帧能与原始帧无缝衔接,达到提升视频流畅度的效果。当前,插帧算法在学术界不断取得突破,多篇文章通过transformer的引入能够有效提升PSNR等验证指标。但当前大多数SOTA模型在一些通用视频的困难场景下(包括但不限于:大运动场景、重复纹理场景、电影中的台标、字幕)生成的中间帧存在明显的瑕疵现象。而上述所提到的场景,也成为了当前视频插帧在业界所面临的最大挑战。此外,当前的大多数插帧算法仅支持生成t=0.5时刻的中间帧,即2倍插帧,无法一次性实现高倍率插帧以及任意指定帧率转换。针对以上问题,视觉增强团队在Modelscope上线了自研的插帧算法,该算法能够有效提升上述困难场景下的插帧质量,同时该算法支持任意时刻的中间帧生成,输出帧率可由用户任意指定。

  点击链接,立即体验:https://vision.aliyun.com/experience/detail?tagName=videoenhan&children=InterpolateVideoFrame

二、方法

  我们的算法采用深度学习方案,完整链路可分为四部分:原始帧间光流预测、光流修复(refine)、中间帧光流估计、中间帧生成。

1、原始帧间光流预测

  当前,绝大多数插帧算法都是基于光流来实现运动估计的。光流能够表征相邻两帧间对应像素点的运动距离大小,反映同一物体的位置对应关系。通常来说,光流预测的精准程度越高,生成的中间帧也更准确。在我们的算法中,复用了RAFT这一光流模型,用于生成F0->1和F1->0。和其它的光流模型相比,RAFT所提出的convex upsample使其在估计快速运动小物体有着更高的准确率。

             100.png

                  (输入img0、img1)

              101.png

                      Ft->1

              102.png

                      Ft->0

2、光流修复

  针对RAFT模型所生成的光流,我们引入了基于cross-attention transformer结构来对原始光流进行修复。该结构能够扩大感受野,结合Unet能够有效捕捉大运动场景下的光流。经过修复,我们可以得到对原始帧间的光流F0->1和F1->0实现精准估计。

              103.png

  cross-attention transformer[3]

3、中间帧光流估计

  这一步的主要目的是通过F0->1和F1->0去估计Ft->1和Ft->0,这里我们引入了基于四帧输入的光流估计算法。和两帧输入算法相比,该算法能够更好地捕获快速运动物体的加速度,此外,多帧信息的引入,又能够有效提升重复纹理场景光流估计错误的问题。

             104.png

   中间帧光流估计[4]

4、中间帧生成

  这一步借由I1和Ft->1、I0和Ft->0,通过backward warping各自生成中间帧。考虑到潜在的遮挡问题,通过mask对两张图像进行加权融合,即可得到最终的中间帧图像。该部分算法和当前大多数插帧算法无异。


三、效果

1、算法优势和功能支持

  基于深度学习方法,针对大运动、重复纹理等困难场景进行了算法改进。针对电影、电视剧、体育赛事视频中常出现的台标、字幕等场景,进行了训练数据构造和增强,大幅提升了算法的实用性。

  支持用户指定任意帧率输出,算法可自动计算插帧时刻,并支持任意时刻的插帧。

  针对部分镜头切换或其它不适合插帧的场景,可进行自动检测和筛选。

2、视频、图像综合增强

  插帧算法作为视频增强的一部分,能够有效解决视频卡顿的问题。任何低质量的原始视频,都能够在增强修复后变得焕然一新,让你享受到极致高清、饱满、丝滑的视频观看体验。


四、展望

  除了视频编辑和修复功能,未来我们还将持续探索插帧技术更为广阔的应用场景。当前随着大模型的兴起和层出不穷的AIGC玩法,插帧在图生视频、图片场景串联转换等领域,仍然存在巨大的潜力等待我们去发掘。


五、参考

[1] Teed, Zachary, and Jia Deng. "Raft: Recurrent all-pairs field transforms for optical flow." European conference on computer vision. Springer, Cham, 2020

[2] Huang, Zhewei, et al. "Real-time intermediate flow estimation for video frame interpolation." Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XIV. Cham: Springer Nature Switzerland, 2022.

[3] Lu, Liying, et al. "Video Frame Interpolation with Transformer." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

[4] Xu, Xiangyu, et al. “Quadratic video interpolation.” Advances in Neural Information Processing Systems 32 (2019).



相关文章
|
编解码 计算机视觉
使用ffmpeg将图片合成为视频(附完整参数介绍)
ffmpeg -f image2 -i %d.jpeg -vf scale=-1:480 output5.mp4 #-1表示比例缩放,也可-vf scale=640:-1固定宽度缩放高度
1348 0
|
9月前
|
存储 编解码 调度
剖析ffmpeg视频解码播放:时间戳的处理
剖析ffmpeg视频解码播放:时间戳的处理
798 0
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
四张图片道清AI大模型的发展史(1943-2023)
现在最火的莫过于GPT了,也就是大规模语言模型(LLM)。“LLM” 是 “Large Language Model”(大语言模型)的简称,通常用来指代具有巨大规模参数和复杂架构的自然语言处理模型,例如像 GPT-3(Generative Pre-trained Transformer 3)这样的模型。这些模型在处理文本和语言任务方面表现出色,但其庞大的参数量和计算需求使得它们被称为大模型。当然也有一些自动生成图片的模型,但是影响力就不如GPT这么大了。
3360 0
|
存储 传感器 编解码
Android OpenGL 渲染图像读取哪家强
glReadPixels 是 OpenGL ES 的 API ,OpenGL ES 2.0 和 3.0 均支持。 使用非常方便,下面一行代码即可搞定,但是效率也是最低的。
1363 0
Android OpenGL 渲染图像读取哪家强
|
机器学习/深度学习 存储 编解码
Open3d系列 | 3. Open3d实现点云上采样、点云聚类、点云分割以及点云重建
Open3d系列 | 3. Open3d实现点云上采样、点云聚类、点云分割以及点云重建
11408 1
Open3d系列 | 3. Open3d实现点云上采样、点云聚类、点云分割以及点云重建
|
自然语言处理 并行计算 Linux
零成本带你体验手搓AIGC模型
零成本带你体验手搓AIGC模型
1072 0
零成本带你体验手搓AIGC模型
|
25天前
|
机器学习/深度学习 PyTorch 调度
内部干货 | 基于华为昇腾910B算力卡的大模型部署和调优-课程讲义
近日上海,TsingtaoAI为某央企智算中心交付华为昇腾910B算力卡的大模型部署和调优课程。课程深入讲解如何在昇腾NPU上高效地训练、调优和部署PyTorch与Transformer模型,并结合实际应用场景,探索如何优化和迁移模型至昇腾NPU平台。课程涵盖从模型预训练、微调、推理与评估,到性能对比、算子适配、模型调优等一系列关键技术,帮助学员深入理解昇腾NPU的优势及其与主流深度学习框架(如PyTorch、Deepspeed、MindSpore)的结合应用。
312 13
|
2月前
|
Web App开发 机器学习/深度学习 人工智能
Magic Copy:开源的 AI 抠图工具,在浏览器中自动识别图像进行抠图
Magic Copy 是一款开源的 AI 抠图工具,支持 Chrome 浏览器扩展。它基于 Meta 的 Segment Anything Model 技术,能够自动识别图像中的前景对象并提取出来,简化用户从图片中提取特定元素的过程,提高工作效率。
152 7
Magic Copy:开源的 AI 抠图工具,在浏览器中自动识别图像进行抠图
|
9月前
|
机器学习/深度学习 算法 物联网
LoRA及其变体概述:LoRA, DoRA, AdaLoRA, Delta-LoRA
LoRA可以说是针对特定任务高效训练大型语言模型的重大突破。它被广泛应用于许多应用中。在本文中,我们将解释LoRA本身的基本概念,然后介绍一些以不同的方式改进LoRA的功能的变体,包括LoRA+、VeRA、LoRA- fa、LoRA-drop、AdaLoRA、DoRA和Delta-LoRA。
685 2
|
物联网 PyTorch 算法框架/工具
ModelScope中,自己拉起的训练,pytorch_lora_weights.bin 这个文件怎么转成sd的可直接导入的lora文件呢?
ModelScope中,自己拉起的训练,pytorch_lora_weights.bin 这个文件怎么转成sd的可直接导入的lora文件呢?
433 1

热门文章

最新文章