Python的多线程与多进程详解

简介: 全局解释器锁(GIL)导致了Python多线程无法利用多核CPU并发执行。引入GIL,是为了解决多线程之间数据完整性和状态同步的问题,简化了Python对共享资源的管理;但是也降低了并发编程的性能。

Python并发支持
(1)多线程与多进程对比
image.png

(2)IO密集型与CPU密集型计算对比
image.png

(3)并发编程-常见问题
并发编程中,还有几个绕不开的话题:
使用Lock对资源加锁,防止并发冲突。
使用队列Queue可以实现线程或进程间通信,可以实现生产者-消费者模式
使用线程池或进程池,简化线程或者进程的提交、等待与获取结果。

Python速度慢的原因
在并发编程上,Python比C/C++、Java都慢。主要有以下原因:

解释性语言
1、边解释边执行
Python是动态类型的语言,需要边解释边执行。
C/C++编写完成之后,需要编译为直接可执行的机器码,机器码执行速度非常快。
2、变量的特性
再次就是Python中变量的类型,是不固定的。
它既可以是数字,随时可以切换为字符串或者列表。
这就需要随时检查变量数据类型,所以性能下降。

GIL(全局解释器锁)
全局解释器锁(GIL)导致了Python多线程无法利用多核CPU并发执行。
全局解释器锁(GIL:Global Interpreter Lock的缩写)。
image.png

GIL是Python解释器用于同步线程的一种机制,使得任何时刻仅有一个线程在执行;即便在多核CPU上,GIL的解释器也只允许同一时间执行一个线程。
最开始引入GIL,是为了解决多线程之间数据完整性和状态同步的问题,简化了Python对共享资源的管理;但是也降低了并发编程的性能。现在想要去除,却比较难了。

CPU密集型计算案例
CPU密集型计算

key = 100000000 * 100000
num_list = [random.randint(key, 10 * key) for i in range(1000)]

# 计算一个数是否是质数
def is_prime(num: int) -> bool:
    if num < 2:
        return False
    if num == 2:
        return True
    if num % 2 == 0:
        return False
    sqrt_num = int(math.floor(math.sqrt(num)))
    for i in range(3, sqrt_num + 1, 2):
        if num % i == 0:
            return False
    return True

这里定义一个判断质数的方法,判断1000个数(10万亿 ~ 100万亿之间的随机数)

三种方式对比
单线程、多线程、多进程处理这个CPU密集型计算;统计三种方法耗时。

单线程处理

def single_thread():

for num in num_list:
    is_prime(num)

多线程处理

def multi_threads():

with ThreadPoolExecutor() as pool:
    pool.map(is_prime, num_list)

多进程处理

def multi_process():

with ProcessPoolExecutor() as pool:
    pool.map(is_prime, num_list)

主执行方法

处理耗时统计

if name == "__main__":

start = time.time()
single_thread()
end = time.time()
print(f"single thread cost : {end - start}")

start = time.time()
multi_threads()
end = time.time()
print(f"multi threads cost : {end - start}")

start = time.time()
multi_process()
end = time.time()
print(f"multi process cost : {end - start}")

执行结果对比
single thread cost : 8.104012489318848
multi threads cost : 8.150990724563599
multi process cost : 1.85487961769104
结论:
对于CPU密集型任务,
(1)多线程可能因为线程切换,比单线程性能还差。
(2)多进程性能明显优于多线程。

相关文章
|
4月前
|
数据采集 存储 JSON
Python爬取知乎评论:多线程与异步爬虫的性能优化
Python爬取知乎评论:多线程与异步爬虫的性能优化
|
4月前
|
人工智能 安全 调度
Python并发编程之线程同步详解
并发编程在Python中至关重要,线程同步确保多线程程序正确运行。本文详解线程同步机制,包括互斥锁、信号量、事件、条件变量和队列,探讨全局解释器锁(GIL)的影响及解决线程同步问题的最佳实践,如避免全局变量、使用线程安全数据结构、精细化锁的使用等。通过示例代码帮助开发者理解并提升多线程程序的性能与可靠性。
177 0
|
1月前
|
Java 测试技术 API
【JUC】(1)带你重新认识进程与线程!!让你深层次了解线程运行的睡眠与打断!!
JUC是什么?你可以说它就是研究Java方面的并发过程。本篇是JUC专栏的第一章!带你了解并行与并发、线程与程序、线程的启动与休眠、打断和等待!全是干货!快快快!
386 2
|
1月前
|
JSON 网络协议 安全
【Java】(10)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
129 1
|
1月前
|
JSON 网络协议 安全
【Java基础】(1)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
147 1
|
27天前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
201 0
|
3月前
|
数据采集 消息中间件 并行计算
Python多线程与多进程性能对比:从原理到实战的深度解析
在Python编程中,多线程与多进程是提升并发性能的关键手段。本文通过实验数据、代码示例和通俗比喻,深入解析两者在不同任务类型下的性能表现,帮助开发者科学选择并发策略,优化程序效率。
235 1
|
4月前
|
监控 编译器 Python
如何利用Python杀进程并保持驻留后台检测
本教程介绍如何使用Python编写进程监控与杀进程脚本,结合psutil库实现后台驻留、定时检测并强制终止指定进程。内容涵盖基础杀进程、多进程处理、自动退出机制、管理员权限启动及图形界面设计,并提供将脚本打包为exe的方法,适用于需持续清理顽固进程的场景。
|
4月前
|
数据采集 监控 调度
干货分享“用 多线程 爬取数据”:单线程 + 协程的效率反超 3 倍,这才是 Python 异步的正确打开方式
在 Python 爬虫中,多线程因 GIL 和切换开销效率低下,而协程通过用户态调度实现高并发,大幅提升爬取效率。本文详解协程原理、实战对比多线程性能,并提供最佳实践,助你掌握异步爬虫核心技术。
|
4月前
|
数据采集 存储 Java
多线程Python爬虫:加速大规模学术文献采集
多线程Python爬虫:加速大规模学术文献采集

热门文章

最新文章

推荐镜像

更多