m基于RBF神经网络的数据预测matlab仿真,测试数据分别采用趋势型数据,周期型数据以及混乱型数据

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: m基于RBF神经网络的数据预测matlab仿真,测试数据分别采用趋势型数据,周期型数据以及混乱型数据

1.算法描述

   1985年,Powell提出了多变量插值的径向基函数(RBF)方法。径向基函数是一个取值仅仅依赖于离原点距离的实值函数,也可以是到任意一点c的距离,c点称为中心点。任意满足上述特性的函数,都可以叫做径向基函数。一般使用欧氏距离计算距离中心点的距离(欧式径向基函数)。最常用的径向基函数是高斯核函数。RBF神经网络只有三层,即输入层、隐藏层、输出层。

image.png

  用RBF作为隐藏层单元的激活函数,将输入数据映射到高维隐藏空间,不需要通过权值连接,当RBF的中心点确定后,映射关系也就确定了。比如图2中的隐藏层c1-ch,需要确定h个中心点。

   隐藏层到输出层的映射是线性的,即网络的输出是隐藏单元输出的线性加权求和,这里的权重(w)即为网络的可调参数。

注意:隐含层的作用是把向量从低维度的p映射到高维度的h,这样低维度线性不可分的情况到高维度就可以变得线性可分了,主要就是核函数的思想。这样,网络由输入到输出的映射是非线性的;而网络输出对可调参数而言却又是线性的,网络的权就可由线性方程组直接解出,从而大大加快学习速度并避免局部极小问题。

   径向基神经网络的激活函数可表示为:

image.png

   其中xp为第p个输入样本,ci为第i个中心点,h为隐含层的结点数,n是输出的样本数或分类数。径向基神经网络的结构可得到网络的输出为: 

image.png

  RBF神经网络的隐节点采用输入模式与中心向量的距离(如欧式距离)作为函数的自变量,并使用径向基函数(如Gaussian函数)作为激活函数。神经元的输入离径向基函数中心越远,神经元的激活程度就越低(高斯函数)。 

2.仿真效果预览
matlab2022a仿真结果如下:

image.png
image.png
image.png
image.png
image.png

3.MATLAB核心程序

%%
%选择100个数据作为输入
Data = data3(1:100);
%%
%选择20个训练数据
t11         = 1:10;
Train_data1 = Data(1:10);
t12         = 1:10;
spread = 1;
goal   = 0.01;
df     = 1;
mn     = length(t11);
net    = newrb(t11,Train_data1,goal,spread,mn,df); 
 
yc1    = sim(net,t12);
%%
%选择70个训练数据
t21         = 1:60;
Train_data2 = Data(1:60);
t22         = 1:60;
 
spread = 1;
goal   = 0.01;
df     = 1;
mn     = length(t21);
net    = newrb(t22,Train_data2,goal,spread,mn,df); 
yc2    = sim(net,t22);
 
figure;
plot(t21,Train_data2,'b-o');
hold on;
plot(t22,yc2,'r-*');
hold off;
grid on;
 
 
 
%%
%%对比计算结果
mser11 = func_mse(Train_data1);
mser12 = func_mse(yc1);
sder1  = func_sd(yc1);
sdrer1 = func_sdr(yc1,Train_data1);
coeff1 = func_pcc(yc1,Train_data1);
 
fprintf('Inputs    Train data points    MSE training    MSE testing     PCC         SDR         SD\n');
%%
%下面的程序是画图
cnt = 0;
for i = 10:2:60
    i
    cnt         = cnt + 1;
    t01         = 1:i;
    Train_data0 = Data(1:i);
    t02         = 1:i;
    spread      = 1;
    goal        = 0.01;
    df          = 1;
    mn          = length(t01);
    net         = newrb(t02,Train_data0,goal,spread,mn,df); 
    yc0         = sim(net,t02);
    %%
    %%对比计算结果
    mser01(cnt) = func_mse(Train_data0);
    mser02(cnt) = func_mse(yc0);
    sder0(cnt)  = func_sd(yc0);
    sdrer0(cnt) = func_sdr(yc0,Train_data0);   
end
相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
7天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
28天前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
33 6
|
1月前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段。本文介绍了 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,强调了样本量、随机性和时间因素的重要性,并展示了 Python 在 A/B 测试中的具体应用实例。
30 1
|
1月前
|
数据库连接 Go 数据库
Go语言中的错误注入与防御编程。错误注入通过模拟网络故障、数据库错误等,测试系统稳定性
本文探讨了Go语言中的错误注入与防御编程。错误注入通过模拟网络故障、数据库错误等,测试系统稳定性;防御编程则强调在编码时考虑各种错误情况,确保程序健壮性。文章详细介绍了这两种技术在Go语言中的实现方法及其重要性,旨在提升软件质量和可靠性。
32 1
|
1月前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
128 1
|
1月前
|
编解码 安全 Linux
网络空间安全之一个WH的超前沿全栈技术深入学习之路(10-2):保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali——Liinux-Debian:就怕你学成黑客啦!)作者——LJS
保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali以及常见的报错及对应解决方案、常用Kali功能简便化以及详解如何具体实现
|
2月前
|
存储 测试技术 数据库
数据驱动测试和关键词驱动测试的区别
数据驱动测试 数据驱动测试或 DDT 也被称为参数化测试。
37 1
|
2月前
|
机器学习/深度学习 监控 计算机视觉
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
本文介绍了如何使用YOLOv7进行目标检测,包括环境搭建、数据集准备、模型训练、验证、测试以及常见错误的解决方法。YOLOv7以其高效性能和准确率在目标检测领域受到关注,适用于自动驾驶、安防监控等场景。文中提供了源码和论文链接,以及详细的步骤说明,适合深度学习实践者参考。
571 0
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
人工智能 安全 Linux
网络空间安全之一个WH的超前沿全栈技术深入学习之路(4-2):渗透测试行业术语扫盲完结:就怕你学成黑客啦!)作者——LJS
网络空间安全之一个WH的超前沿全栈技术深入学习之路(4-2):渗透测试行业术语扫盲完结:就怕你学成黑客啦!)作者——LJS
|
1月前
|
安全 大数据 Linux
网络空间安全之一个WH的超前沿全栈技术深入学习之路(3-2):渗透测试行业术语扫盲)作者——LJS
网络空间安全之一个WH的超前沿全栈技术深入学习之路(3-2):渗透测试行业术语扫盲)作者——LJS