礼物的最大价值(剑指offer 47)

简介: 在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?

一、题目描述



       在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达


示例 1:

输入:

[

 [1,3,1],

 [1,5,1],

 [4,2,1]

]

输出: 12

解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物


提示:

0 < grid.length <= 200

0 < grid[0].length <= 200


二、思路讲解



对于我这种算法小白来说,一步一步往下走的题一律视作动态规划。那么动态规划就需要找到递推式。


我们不难发现,右下角的最大价值其实是max{上面一格的最大值,左边一格的最大值} ,因此,我们建立数组dp,dp[i][j]表示到达(i,j)时的最大价值。


下面就是考虑边界问题,在最左边的时候,价值只跟上面一格有关;在最上面的时候,价值只跟左边一格有关;左上角的顶点最大价值就是他本身。


三、Java代码实现



class Solution {
    public int maxValue(int[][] grid) {
        //dp[i][j]表示到达(i,j)时的最大数
        int [][]dp = new int [grid.length][grid[0].length];
    dp[0][0] = grid[0][0];
    for(int i=0; i<grid.length; i++) {
      for(int j=0; j<grid[0].length; j++) {
        if(i==0 && j!=0) {  //考虑上边边界
          dp[i][j] = dp[i][j-1] + grid[i][j];
        } else if(i!=0 && j==0) {   //考虑左边边界
          dp[i][j] = dp[i-1][j] + grid[i][j];
        } else if(i!=0 && j!=0) {
          dp[i][j] = dp[i][j-1]>dp[i-1][j] ? dp[i][j-1] : dp[i-1][j];
          dp[i][j] = dp[i][j]  + grid[i][j];
        }
      }
    }
    return dp[grid.length-1][grid[0].length-1];
    }
}


四、时空复杂度分析



时间复杂度:        平方阶        要将二维数组遍历一遍

空间复杂度:        平方阶        使用一个二维数组


五、代码优化



1、优化空间

       

因为在dp数组中我们只使用每一格的上面一格和左边一格,grid数组只使用当前一格 ,所以我们可以无需申请dp数组,直接将grid数组覆盖即可

class Solution {
    public int maxValue(int[][] grid) {
        int m = grid.length, n = grid[0].length;
        for(int i = 0; i < m; i++) {
            for(int j = 0; j < n; j++) {
                if(i == 0 && j == 0) 
                    continue;
                if(i == 0) 
                    grid[i][j] += grid[i][j - 1] ;
                else if(j == 0) 
                    grid[i][j] += grid[i - 1][j];
                else 
                    grid[i][j] += Math.max(grid[i][j - 1], grid[i - 1][j]);
            }
        }
        return grid[m - 1][n - 1];
    }
}


空间复杂度可以降为常量阶


2、比较次数优化

     

由于二维数组中处于边界的格子是少数,而在我们的算法中每一个格子都要判断是否处于两条边界上,显然浪费了时间。


我们可以先把第一行和第一列初始化出来,这样就可以省去判断的时间。

class Solution {
    public int maxValue(int[][] grid) {
        int m = grid.length, n = grid[0].length;
        for(int j = 1; j < n; j++) // 初始化第一行
            grid[0][j] += grid[0][j - 1];
        for(int i = 1; i < m; i++) // 初始化第一列
            grid[i][0] += grid[i - 1][0];
        for(int i = 1; i < m; i++)
            for(int j = 1; j < n; j++) 
                grid[i][j] += Math.max(grid[i][j - 1], grid[i - 1][j]);
        return grid[m - 1][n - 1];
    }
}



相关文章
|
算法
【学会动态规划】礼物的最大价值(7)
【学会动态规划】礼物的最大价值(7)
62 0
【寒假每日一题】AcWing 4455. 出行计划
目录 一、题目 1、原题链接 2、题目描述 二、解题报告 1、思路分析 2、时间复杂度 3、代码详解 三、知识风暴 差分与前缀和
123 0
|
8月前
剑指 Offer 47:礼物的最大价值
剑指 Offer 47:礼物的最大价值
41 0
动态规划之剑指 Offer 47. 礼物的最大价值
动态规划之剑指 Offer 47. 礼物的最大价值
剑指offer 48. 礼物的最大价值
剑指offer 48. 礼物的最大价值
54 0
|
C++
剑指Offer - 面试题47:礼物的最大价值
剑指Offer - 面试题47:礼物的最大价值
98 0
|
算法 程序员 C++
【算法集训暑期刷题营】7.21日题-数组
【算法集训暑期刷题营】7.21日题-数组
【算法集训暑期刷题营】7.21日题-数组
剑指 Offer 47. 礼物的最大价值
剑指 Offer 47. 礼物的最大价值
140 0
|
机器学习/深度学习 人工智能 算法
蓝桥杯最后一天复习?各大算法四步法教你轻松秒杀各种题型
大家好,我是泡泡,距离蓝桥杯还有一天时间,我们一定要把握住最后的时间,跟着我,把全部的题型复习整理一遍,让自己不再迷茫不自信,AK蓝桥!
247 0
蓝桥杯最后一天复习?各大算法四步法教你轻松秒杀各种题型