StackGAN 论文阅读笔记(二)

简介: StackGAN 论文阅读笔记(二)

研究成果


Research Results

首次在文本到图像的任务中,生成了256*256分辨率的高质量图像

提出的条件增强方法,能增强模型的鲁棒性并提升生成效果的多样性


成为了文本生成图像任务中的一个里程碑

基于VAE思想的条件增强方法,对之后的研究者造成了一定启发


条件增强


条件增强

Conditioning Augmentation

文本嵌入的隐空间维度通常非常高(> 100),在数据量有限的情况下,这通常会导致隐数据流形中的不连续性


从高斯分布 中随机采样latent code,是关于词向量 的函数



均值μ和方差Σ使用一个全连接层来求解

把KL散度作为一个正则项加入生成器的训练

使用重参化技巧

使用上述的条件增强方法后,可以产生更多的训练数据,使条件流形更加平滑

增加的采样随机性,可以使输入同一个句子时产生不同的输出图像


两阶段的GAN


Stacked GAN



阶段1

从标准高斯分布中采样得到z,与从条件增强方法采样得到的 进行concat作为输入

为文本描述所对应的真实图像,在所有实验中λ都设为1

在判别器中,输入图像经过下采样,最终得到长宽为M的矩阵;而词向量会先经过全连接层来压缩到N维,然后在空间维度上复制变为MMN的矩阵

图像和词向量的矩阵concat到一起,再通过1*1卷积和全连接层得到最终的输出分数


阶段2



把阶段1的输出 与又一次条件增强采样得到的 进行concat作为输入

在生成器中增加了残差block;判别器中的负样本有真实图像-错误文本,生成图像-正确文本两种情况


实现细节

上采样使用最近邻resize + 33卷积

除了最后一层外,在每个卷积层之后都使用了BN和ReLU

在128128的StackGAN中使用了2个残差block,在256256中使用了4个

判别器中,下采样的block使用44步长为2的卷积,除了第一层没使用BN外,别的都使用了BN和LeakyReLU

首先训练阶段1的GAN 600个epochs,接着将其固定,再训练阶段2的GAN 600个epochs

都使用Adam优化器,batch size设为64

初始学习率设为2e-4,之后进行指数衰减,每100个epochs衰减到1/2

目录
相关文章
|
7月前
|
机器学习/深度学习 决策智能
2024年1月论文推荐
2024年1月论文推荐
93 1
|
4月前
|
算法 数据挖掘 数据建模
【2023年4月美赛加赛】Y题:Understanding Used Sailboat Prices 三篇完整论文及代码
本文概述了2023年4月美赛加赛Y题“Understanding Used Sailboat Prices”的三篇完整论文及代码,涉及二手帆船定价的数学模型构建、区域效应分析、模型在香港市场的适用性验证,以及对帆船市场因素的深入分析和预测。
48 0
|
5月前
|
存储 算法 程序员
|
算法 搜索推荐 数据挖掘
CollabRank论文解读
以前的方法通常对单个文档单独执行关键字短语提取任务,而不对每个文档进行交互,假设文档被视为彼此独立。
89 0
|
7月前
|
人工智能 Unix 开发工具
vimtutor阅读笔记
csdn博客搬运 vim 常用操作
61 0
|
自然语言处理 并行计算 算法
PositionRank论文解读
PositionRank是2017年提出的论文,是一种用于从学术文档中提取关键短语的无监督模型,它将单词出现的所有位置的信息合并到有偏置的PageRank中。
130 0
|
机器学习/深度学习 编解码 监控
BigGAN-论文阅读笔记
BigGAN-论文阅读笔记
232 0
BigGAN-论文阅读笔记
|
机器学习/深度学习 编解码 计算机视觉
StackGAN 论文阅读笔记(三)
StackGAN 论文阅读笔记(三)
106 0
StackGAN 论文阅读笔记(三)
|
机器学习/深度学习 编解码 算法
DGP 论文阅读笔记
DGP 论文阅读笔记
248 0
DGP 论文阅读笔记
|
机器学习/深度学习 编解码 自然语言处理
StackGAN 论文阅读笔记(一)
StackGAN 论文阅读笔记(一)
101 0
StackGAN 论文阅读笔记(一)