python小玩意——词频展示和统计

简介: python小玩意——词频展示和统计

代码功能:

将一篇txt的文章与py文件放在同一目录下,统计txt文件里面的词频并进行展示(可以将不想统计的词语进行去除)

效果如下:

定义词频背景:在这里插入图片描述

词频统计:

在这里插入图片描述

词频展示:

在这里插入图片描述

代码如下:

# 导入扩展库
import re # 正则表达式库
import collections # 词频统计库
import numpy as np # numpy数据处理库
import jieba # 结巴分词
import wordcloud # 词云展示库
from PIL import Image # 图像处理库
import matplotlib.pyplot as plt # 图像展示库

# 读取文件
fn = open('article.txt') # 打开文件
string_data = fn.read() # 读出整个文件
fn.close() # 关闭文件

# 文本预处理
pattern = re.compile(u'\t|\n|\.|-|:|;|\)|\(|\?|"') # 定义正则表达式匹配模式
string_data = re.sub(pattern, '', string_data) # 将符合模式的字符去除

# 文本分词
seg_list_exact = jieba.cut(string_data, cut_all = False) # 精确模式分词
object_list = []
remove_words = [u'的', u',',u'和', u'是', u'随着', u'对于', u'对',u'等',u'能',u'都',u'。',u' ',u'、',u'中',u'在',u'了',
                u'通常',u'如果',u'我们',u'需要'] # 自定义去除词库

for word in seg_list_exact: # 循环读出每个分词
    if word not in remove_words: # 如果不在去除词库中
        object_list.append(word) # 分词追加到列表

# 词频统计
word_counts = collections.Counter(object_list) # 对分词做词频统计
word_counts_top10 = word_counts.most_common(10) # 获取前10最高频的词
print (word_counts_top10) # 输出检查

# 词频展示
mask = np.array(Image.open('123.jpg')) # 定义词频背景
wc = wordcloud.WordCloud(
    font_path='C:/Windows/Fonts/simhei.ttf', # 设置字体格式
    mask=mask, # 设置背景图
    max_words=200, # 最多显示词数
    max_font_size=100 # 字体最大值
)

wc.generate_from_frequencies(word_counts) # 从字典生成词云
image_colors = wordcloud.ImageColorGenerator(mask) # 从背景图建立颜色方案
wc.recolor(color_func=image_colors) # 将词云颜色设置为背景图方案
plt.imshow(wc) # 显示词云
plt.axis('off') # 关闭坐标轴
plt.show() # 显示图像
相关文章
|
7月前
|
数据采集 自然语言处理 搜索推荐
python【包含数据预处理】基于词频生成词云图
背景目的 有一篇中文文章,或者一本小说。想要根据词频来生成词云图。
|
3月前
|
数据可视化 数据挖掘 Python
Seaborn 库创建吸引人的统计图表
【10月更文挑战第11天】本文介绍了如何使用 Seaborn 库创建多种统计图表,包括散点图、箱线图、直方图、线性回归图、热力图等。通过具体示例和代码,展示了 Seaborn 在数据可视化中的强大功能和灵活性,帮助读者更好地理解和应用这一工具。
|
3月前
|
JSON 数据格式 Python
Python实用记录(十四):python统计某个单词在TXT/JSON文件中出现的次数
这篇文章介绍了一个Python脚本,用于统计TXT或JSON文件中特定单词的出现次数。它包含两个函数,分别处理文本和JSON文件,并通过命令行参数接收文件路径、目标单词和文件格式。文章还提供了代码逻辑的解释和示例用法。
55 0
Python实用记录(十四):python统计某个单词在TXT/JSON文件中出现的次数
|
3月前
|
数据可视化 Serverless Python
Python小事例—质地不均匀的硬币的概率统计
Python小事例—质地不均匀的硬币的概率统计
64 0
|
6月前
|
数据采集 自然语言处理 大数据
​「Python大数据」词频数据渲染词云图导出HTML
使用Python,本文展示数据聚类和办公自动化,焦点在于通过jieba分词处理VOC数据,构建词云图并以HTML保存。`wordCloud.py`脚本中,借助pyecharts生成词云,如图所示,关键词如"Python"、"词云"等。示例代码创建了词云图实例,添加词频数据,并输出到"wordCloud.html"。
113 1
​「Python大数据」词频数据渲染词云图导出HTML
|
6月前
|
数据可视化 数据挖掘 定位技术
Seaborn统计图表指南
【7月更文挑战第12天】Seaborn是Python的数据可视化库,基于Matplotlib,提供美观的统计图形。要开始使用,需通过`pip install seaborn`安装。它支持多种图表,如分布图、热图、聚类图、箱线图、小提琴图、联合分布图、点图、多变量分布图、线性关系图、树地图、时间序列图、分面绘图、分类数据图、分布对比图、多变量图和气泡图等,适用于复杂数据分析和展示。Seaborn简化了创建这些高级图表的过程,使数据可视化更直观和高效。
|
7月前
|
存储 数据挖掘 Python
使用Python集合高效统计Excel数据
使用Python集合高效统计Excel数据
88 7
|
6月前
|
数据可视化 Python
时间序列分析是一种统计方法,用于分析随时间变化的数据序列。在金融、经济学、气象学等领域,时间序列分析被广泛用于预测未来趋势、检测异常值、理解周期性模式等。在Python中,`statsmodels`模块是一个强大的工具,用于执行各种时间序列分析任务。
时间序列分析是一种统计方法,用于分析随时间变化的数据序列。在金融、经济学、气象学等领域,时间序列分析被广泛用于预测未来趋势、检测异常值、理解周期性模式等。在Python中,`statsmodels`模块是一个强大的工具,用于执行各种时间序列分析任务。
|
6月前
|
数据可视化 Linux 数据格式
`seaborn`是一个基于`matplotlib`的Python数据可视化库,它提供了更高级别的接口来绘制有吸引力的和信息丰富的统计图形。`seaborn`的设计目标是使默认图形具有吸引力,同时允许用户通过调整绘图参数来定制图形。
`seaborn`是一个基于`matplotlib`的Python数据可视化库,它提供了更高级别的接口来绘制有吸引力的和信息丰富的统计图形。`seaborn`的设计目标是使默认图形具有吸引力,同时允许用户通过调整绘图参数来定制图形。
Python----统计字符串中的英文字母、空格、数字和其它字符的个数。
Python----统计字符串中的英文字母、空格、数字和其它字符的个数。