算法设计与分析/数据结构与算法实验6:0-1背包问题(回溯法)

简介: 算法设计与分析/数据结构与算法实验6:0-1背包问题(回溯法)

1.实验目的

(1)掌握回溯法的处理思路与算法框架。

(2)掌握应用回溯法解决具体问题的方法。

(3)掌握回溯法的广泛应用。

2.实验内容

(1)问题描述

image.png


要求使用回溯法解决该问题。

(2)输入

image.png


(3)输出

image.png


3.问题实例分析

image.png


因此,先装入第一个物品,此时体积足够装入第二个物品。装完第二个物品后,还能在装第三个物品。以深度优先的顺序,此时访问到的解空间树的结点如图所示:

注意:我自己都觉得图太丑了,大家画图时不要为了方便用wps自带的画图工具画!!!还是visio好!!!

image.png

image.png


从该结点回溯到上一结点,并在访问右子树前分别计算每个结点的当前价值cp与剩余价值r,发现都可以将右子树直接剪枝剪掉。

image.png

image.png

image.png


4.算法描述及说明

正如第3节问题实例分析所述,算法的整体流程如下:

1.输入数据,并对每个物品进行编号。

2.计算每个物品的单位价值,并将物品按单位价值排序。

3.对于第i ii个物品,判断剩余体积是否能够装下该物品。

4.若能装下该物品,则将该物品装入,并构造相应结点。

5.若不能装入该物品,则不将该物品装入,考虑下一物品。

6.在第4步中的物品撤出背包,构造相应结点,并计算剩余物品能产生价值的上界。若上界大于当前最优解,则装入考虑下一物品,否则不考虑。

7.重复3-6的步骤,直到所有物品都被考虑过。

5.算法正确性分析

算法会正确地结束:在遍历完解空间后,找到了使总价值最大的解,算法会停止。

回溯法的正确性分析:开始时,根结点是解空间树唯一的活结点,也是当前的扩展结点。在这个扩展结点处,搜索向深度方向移至一个新节点。这个新结点成为新的扩展结点。如果在当前扩展结点处不能再向纵深方向移动,则当前扩展结点成为死结点。应回溯至最近的活结点处,使得这个活结点成为当前扩展结点。回溯法以系统的方式递归地在解空间树中进行搜索,直到找到所要求的解惑解空间中已无活结点。

因此,利用回溯法会系统地查找背包问题的所有可行解,在剪枝时利用限界函数与剪枝函数剪去了不可行的分支,保留了可行并能产生最大解的分支。

从而,该算法是正确的。

6.算法时间复杂性分析

image.png

7.运行结果展示及其说明

image.png

8.心得体会

9.程序源代码

#include<iostream>
#include<algorithm>
using namespace std;
double cw;//当前重量
double cp;//当前价值
double bestp;//当前最优价值
int n;//物品数量
double c;//背包容量
const int N = 105;
int x[N];
struct Bag {
  double w, v;
  int id, x;
};
Bag bag[N];
bool cmp(Bag a, Bag b) {
  return (a.v / a.w) > (b.v / b.w);
}
double bound(int i) {
  double cleft = c - cw;
  double bd = cp;
  while (i <= n && bag[i].w <= cleft) {
    cleft -= bag[i].w;
    bd += bag[i].v;
    i++;
  }
  if (i <= n)
    bd += bag[i].v * cleft / bag[i].w;
  return bd;
}
void dfs(int i) {
  if (i > n) {
    bestp = cp;
    for (int i = 1; i <= n; i++) 
        x[bag[i].id] = bag[i].x;
    return;
  }
  if (cw + bag[i].w <= c) {
    cw += bag[i].w;
    cp += bag[i].v;
    bag[i].x = 1;
    dfs(i + 1);
    cw -= bag[i].w;
    cp -= bag[i].v;
    bag[i].x = 0;
  }
  if (bound(i + 1) > bestp)
    dfs(i + 1);
}
int main() {
  cin >> n >> c;
  for (int i = 1; i <= n; i++)
    cin >> bag[i].w;
  for (int i = 1; i <= n; i++)
    cin >> bag[i].v;
  for (int i = 1; i <= n; i++)
    bag[i].id = i;
  sort(bag + 1, bag + 1 + n, cmp);
  dfs(1);
  cout << bestp<<endl;
  for (int i = 1; i <= n; i++)
    cout << x[i] << " ";
  return 0;
}


目录
相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
116 4
|
10天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
47 20
|
9天前
|
缓存 算法 搜索推荐
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
24 6
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
2月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
110 23
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
65 1
|
3月前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
2月前
|
算法 vr&ar 计算机视觉
数据结构之洪水填充算法(DFS)
洪水填充算法是一种基于深度优先搜索(DFS)的图像处理技术,主要用于区域填充和图像分割。通过递归或栈的方式探索图像中的连通区域并进行颜色替换。本文介绍了算法的基本原理、数据结构设计(如链表和栈)、核心代码实现及应用实例,展示了算法在图像编辑等领域的高效性和灵活性。同时,文中也讨论了算法的优缺点,如实现简单但可能存在堆栈溢出的风险等。
59 0
|
3月前
|
算法
PID算法原理分析
【10月更文挑战第12天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
9天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
139 80