【C++修炼之路】7. 模板初阶

简介: 【C++修炼之路】7. 模板初阶

C++之模板初阶


本节目标

1. 泛型编程

2. 函数模板

2.1 函数模板的概念

2.2 函数模板的原理

2.3 参数类型不同的模板调用

2.3.1. 实例化时进行改变

2.3.2 模板参数数量改变

2.3.3 具体函数&模板函数

3. 类模板

3.1 类模板的定义格式

3.2 类模板的示例array

4. 模板初阶的总结


本节目标


  • 1. 泛型编程


  • 2. 函数模板

  • 3. 类模板



1.泛型编程


我们思考一下,如何实现一个通用的交换函数呢?

首先想到的就是函数重载,即:


void Swap(int& left, int& right)
{
    int temp = left;
    left = right;
    right = temp;
}
void Swap(double& left, double& right)
{
    double temp = left;
    left = right;
    right = temp;
}
void Swap(char& left, char& right)
{
    char temp = left;
    left = right;
    right = temp;
}
......


事实上当然可以,然而函数重载却有几个不好的地方:

  1. 重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增加对应的函数。
  2. 代码的可维护性比较低,一个出错可能所有的重载均出错


因此,为了防止并优化以上情况,我们引入了泛型的函数模板


如果在C++中,也能够存在这样一个模具,通过给这个模具中填充不同材料(类型),来获得不同材料的铸件(即生成具体类型的代码),那将会节省许多头发。巧的是前人早已将树栽好,我们只需在此乘凉。

泛型编程:编写与类型无关的通用代码,是代码复用的一种手段,模板是泛型编程的1基础。


微信图片_20230225141431.png


2.函数模板


2.1 函数模板的概念


函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本。


因此,这里引入了一个新的关键字:template

template<typename T>
void Swap(T& left, T& right)
{
  T temp = left;
  left = right;
  right = temp;
}
int main()
{
  int a = 1, b = 2;
  Swap(a, b);
  char x = 'a', y = 'b';
  Swap(x, y);
    return 0;
}

微信图片_20230221231908.png

通过template就可以将T设置成泛型,即传入哪种参数就可以变为哪种参数。

注意:typename是用来定义模板参数关键字,也可以使用class


函数模板的原理


函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。所以其实模板就是将本来应该我们做的重复的事情交给了编译器


微信图片_20230221231953.png


在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用。比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然后产生一份专门处理double类型的代码,对于字符类型也是如此。


template<typename T>
void Swap(T& left, T& right)
{
  T temp = left;
  left = right;
  right = temp;
}
int main()
{
  int a = 1, b = 2;
  Swap(a, b);
  char x = 'a', y = 'b';
  Swap(x, y);
  int m = 1, n = 2;
  Swap(m, n);
  return 0;
}

那么对于相同类型的参数,会不会重新建立栈帧呢?

微信图片_20230225141538.png

当我们转到反汇编,发现两次调用的int类型的Swap都是同一个地址,这就意味着在第一次模板调用完int类型的Swap之后,此类型的Swap并没有被销毁,仍然是之前的地址,所以我们发现,通过模板建立的函数与正常的函数调用是相同的:

微信图片_20230225141548.png


即两种函数调用都是该函数的机器指令被存放在代码段中,对于函数模板来说:我们使用相同类型的参数多次调用同一模板函数时,也只会实例化一个模板。因此同一函数被执行多次都是调用同一段指令,然后在不同的栈帧执行该指令(即在不同的子函数开辟的栈帧调用此函数)


代码段放的是编译后的指令,因此在我们转到反汇编之前都会调试,目的就是让其进行编译。


2.3 参数类型不同的模板调用


微信图片_20230225141704.png


不同类型的参数,我们在调用函数之前就会出错,因此不存在隐式类型转换这一步骤,因为调用之前函数模板会根据传进去的参数进行推演函数,但对于传入不同类型的参数,由于模板中的两个参数类型相同,在推演的过程中就会出错。即便不需要推演,直接调用:


void Swap(int& left, int& right)同样会出错,因为x类型不匹配,因此会发生隐式类型转换,但由于隐式类型转换的变量具有常性,也就是const int类型,传入就会涉及权限的放大,故即便不经过推演也会出错。


那么我们可以怎样解决这个问题呢?


2.3。1实例化时进行改变


首先我们可以采用下面的两种方法:(const修饰可以进行隐式类型转换)


template<class T>
T Add(const T& left, const T& right)
{
  return left + right;
}
int main()
{
  int a1 = 10, a2 = 20;
  double d1 = 10.1, d2 = 20.2;
  //自动推演实例化
  cout << Add((double)a1, d2) << endl;
  cout << Add(a1, (int)d2) << endl;
  //显示实例化,不推演
  cout << Add<double>(a1, d2) << endl;
  cout << Add<int>(a1, d2) << endl;
  return 0;
}



自动推演实例化: 我们在推演之前将原本的类型进行了强制类型转换,这样类型就会统一,虽然隐式类型转换的变量具有常性,但函数模板的参数也是const类型的,因此这种方式可以解决。

显示实例化: 在调用函数的时候,我们发现其中已经指定了T的类型,这就代表着指定了这个函数模板的类型,因此会省去推演的步骤,在传参的过程中就会强转临时变量,这与上述一样是可以的。


微信图片_20230225141754.png


但是这样的方式过于麻烦,即我们需要的是在函数模板本身进行修改,而不是为了编译成功而修改传入参数的类型


2.3.2 模板参数数量改变


经过上面的研究,我们发现在调用函数时稍加改动才可以进行编译,这都是因为函数模板中参数类型一致造成的,因此在这里我们采用将参数类型隔离开:


template<class T1, class T2>
T1 Add(const T1& left, const T2& right)
{
  return left + right;
}
int main()
{
  int a1 = 10, a2 = 20;
  double d1 = 10.1, d2 = 20.2;
  cout << Add(a1, a2) << endl;
  cout << Add(d1, d2) << endl;
  cout << Add(a1, d2) << endl;
  cout << Add(a1, d2) << endl;
  return 0;
}


微信图片_20230225141849.png


即此方法才是解决此问题的最好方式。


2.3.3 具体函数&模板函数


对于模板函数和具体函数,如果同时定义会不会产生冲突呢?


//专门处理int的加法函数
int Add(int x, int y) // _Z3Addii
{
  return x + y;
}
//通用加法函数
template<class T>
T Add(T left, T right) // _Z3TAddii
{
  return left + right;
}
int main()
{
  int a = 1, b = 2;
  cout << Add(a, b) << endl;
  return 0;
}


微信图片_20230225141924.png

通过执行程序发现,其并不会产生冲突。

对于具体函数和函数模板来说,前者算完成品,后者算半成品,因此编译器为了节省成本会优先使用完成品,因此不会产生冲突。

我们也可以通过实例化指定调用模板函数:


//专门处理int的加法函数
int Add(int x, int y)
{
  return x + y;
}
//通用加法函数
template<class T>
T Add(T left, T right)
{
  cout << "调用模板T" << endl;
  return left + right;
}
int main()
{
  int a = 1, b = 2;
  cout << Add<int>(a, b) << endl;
  return 0;
}


微信图片_20230225142010.png


即通过上述两个方式,我们可以得出具体函数和模板函数是可以共存的,可以共存就说明其函数名的修饰规则是不同的。


3.类模板


对于类来说,我们拿Stack类举例,其存储内容的内部成员的类型可以是int可以是double,我们可以根据需求将其typedef 类型STDatatype,但如果这样的话,我们要是想同时用一个栈存储int变量,另一个栈存储double变量,这就需要重新建立另一个类,即前者类为StackInt,后者命名为StackDouble,但是这样会造成不小的负担,因此我们引入类模板。


3.1类模板的定义格式


类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后跟<>,然后将实例化的类型放在<>中即可,类模板名字不是真正的类,而实例化的结果才是真正的类。

template<typename T>
class Stack//注:此Stack类并不完美,但对于演示来说,Stack是否完美并不重要
{
public:
  Stack(int capacity = 4)
  {
    cout << "Stack(int capacity = )" <<capacity<<endl;
    _a = (T*)malloc(sizeof(T)*capacity);
    if (_a == nullptr)
    {
      perror("malloc fail");
      exit(-1);
    }
    _top = 0;
    _capacity = capacity;
  }
  void Push(const T& x)//对于这里引用来说,是最好的,因为如果x本身是类,传值就会调用拷贝构造,传引用有效的避免了这种情况
  {
    // ....
    // 扩容
    _a[_top++] = x;
  }
private:
  T* _a;
  int _top;
  int _capacity;
};
int main()
{
  Stack<int> st1;
  st1.Push(1);
  Stack<double> st2;
  st2.Push(2.1);
  return 0;
}

我们发现这样可以更好的定义存储不同类型的两个栈对象st1和st2。对于类模板来说,必须实例化才能在定义时去推演指定的类,如果不在初始化时推演就会报错:

微信图片_20230225142104.png

这是因为在初始化时会自动调用构造函数的初始化列表,因此在初始化我们就必须明确具体类型,否则无法进行初始化。


3.2 类模板的示例array


在这里直接上代码:


#define N 10
template<class T>
class array
{
public://通过inline可以减少栈帧的损失
  inline T& operator[](size_t i)//传引用的优势在这里体现,可以修改
  {
    assert(i < N);//强制检查越界
    return _a[i];
  }
private:
  T _a[N];
};
int main()
{
  array<int> a1;
  for (size_t i = 0; i < N; i++)
  {
    a1[i] = i;
    //等价于 a1.operator[](i) = i;
  }
  for (size_t i = 0; i < N; i++)
  {
    //a1.operator[](i)
    cout << a1[i] << " ";
  }
  cout << endl;
  for (size_t i = 0; i < N; ++i)
  {
    a1[i]++;
  }
  for (size_t i = 0; i < N; i++)
  {
    //a1.operator[](i)
    cout << a1[i] << " ";
  }
  return 0;
}


微信图片_20230225142216.png

对于此array(静态数组)类,我们可以从中看出其与正常定义数组的优势,对于正常定义的数组,越界访问或许检查不到错误,比如越界读:


微信图片_20230225142219.png

但对于我们自定义的类来说,通过assert(i<N)的强制检查,就可以有效的避免这个问题。

微信图片_20230225142225.png


4.模板初阶的总结


以上就是我们这一节所需要掌握的内容。通过以上模板,可以极大地减少代码的负担,从而使我们的代码变得更加完美。

相关文章
|
4月前
|
存储 算法 安全
c++模板进阶操作——非类型模板参数、模板的特化以及模板的分离编译
在 C++ 中,仿函数(Functor)是指重载了函数调用运算符()的对象。仿函数可以像普通函数一样被调用,但它们实际上是对象,可以携带状态并具有更多功能。与普通函数相比,仿函数具有更强的灵活性和可扩展性。仿函数通常通过定义一个包含operator()的类来实现。public:// 重载函数调用运算符Add add;// 创建 Add 类的对象// 使用仿函数return 0;
125 0
|
4月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
94 0
|
7月前
|
编译器 C++
模板(C++)
本内容主要讲解了C++中的函数模板与类模板。函数模板是一个与类型无关的函数家族,使用时根据实参类型生成特定版本,其定义可用`typename`或`class`作为关键字。函数模板实例化分为隐式和显式,前者由编译器推导类型,后者手动指定类型。同时,非模板函数优先于同名模板函数调用,且模板函数不支持自动类型转换。类模板则通过在类名后加`&lt;&gt;`指定类型实例化,生成具体类。最后,语录鼓励大家继续努力,技术不断进步!
|
8月前
|
编译器 C++
㉿㉿㉿c++模板的初阶(通俗易懂简化版)㉿㉿㉿
㉿㉿㉿c++模板的初阶(通俗易懂简化版)㉿㉿㉿
|
8月前
|
安全 C++
【c++】模板详解(2)
本文深入探讨了C++模板的高级特性,包括非类型模板参数、模板特化和模板分离编译。通过具体代码示例,详细讲解了非类型参数的应用场景及其限制,函数模板和类模板的特化方式,以及分离编译时可能出现的链接错误及解决方案。最后总结了模板的优点如提高代码复用性和类型安全,以及缺点如增加编译时间和代码复杂度。通过本文的学习,读者可以进一步加深对C++模板的理解并灵活应用于实际编程中。
106 0
|
8月前
|
存储 安全 算法
深入理解C++模板编程:从基础到进阶
在C++编程中,模板是实现泛型编程的关键工具。模板使得代码能够适用于不同的数据类型,极大地提升了代码复用性、灵活性和可维护性。本文将深入探讨模板编程的基础知识,包括函数模板和类模板的定义、使用、以及它们的实例化和匹配规则。
|
11月前
|
安全 编译器 C++
【C++11】可变模板参数详解
本文详细介绍了C++11引入的可变模板参数,这是一种允许模板接受任意数量和类型参数的强大工具。文章从基本概念入手,讲解了可变模板参数的语法、参数包的展开方法,以及如何结合递归调用、折叠表达式等技术实现高效编程。通过具体示例,如打印任意数量参数、类型安全的`printf`替代方案等,展示了其在实际开发中的应用。最后,文章讨论了性能优化策略和常见问题,帮助读者更好地理解和使用这一高级C++特性。
336 4
|
11月前
|
算法 编译器 C++
【C++】模板详细讲解(含反向迭代器)
C++模板是泛型编程的核心,允许编写与类型无关的代码,提高代码复用性和灵活性。模板分为函数模板和类模板,支持隐式和显式实例化,以及特化(全特化和偏特化)。C++标准库广泛使用模板,如容器、迭代器、算法和函数对象等,以支持高效、灵活的编程。反向迭代器通过对正向迭代器的封装,实现了逆序遍历的功能。
135 3
|
12月前
|
编译器 程序员 C++
【C++打怪之路Lv7】-- 模板初阶
【C++打怪之路Lv7】-- 模板初阶
89 1
|
11月前
|
编译器 C++
【c++】模板详解(1)
本文介绍了C++中的模板概念,包括函数模板和类模板,强调了模板作为泛型编程基础的重要性。函数模板允许创建类型无关的函数,类模板则能根据不同的类型生成不同的类。文章通过具体示例详细解释了模板的定义、实例化及匹配原则,帮助读者理解模板机制,为学习STL打下基础。
124 0