基于python的高校服务器信息的网络空间资源分类 附完整代码数据可作为毕设课设

简介: 基于python的高校服务器信息的网络空间资源分类 附完整代码数据可作为毕设课设

本次研究采用 nmap 获取清华大学和北京大学的服务器的全部实时信息。Nmap 作为一种高效的网络连接端扫描工具,能够充分扫描服务器开放的网络服务端,并确定运行在各自连接端的服务。由于 Nmap 提供了极为方便快捷的服务器信息获取方式,能够使本研究团队在有限的时间内获取足够多的可供分析的信息,因而在本次研究中关于网络空间资源获取方面所采用的主要方法即为 nmap。


本次研究从清华大学、北京大学、中国人民大学、复旦大学、上海交通大学等五所高校获取其服务器信息。其中,以清华大学和北京大学两所高校共搜集的 20 余万条信息和检所获取的 6 万余条信息作为样本进行分析。其中两校在端口数量方面的情况如下图所示。


00b3a45fa37922ee6cb530a2d1db18cf.jpg


图 1 清华大学、北京大学端口数量情况


为了提供更好的检索服务,本研究团队除了通过搭建前端展示两所高校检所得到的全部服务器信息外,还通过每日更新保持信息的时效性。考虑到更新数据的规模和速度,因而重点以清华大学、北京大学两所高校的服务器信息作为样本进行整理、展示和分析。


本次研究所选择的网络资源主要是服务器信息,这一选择的主要原因是服务器信息在网络空间资源中的代表性,同时也是基于对现实因素的考虑。


为了保持网络资源的更新频率,因而对于网络资源的数据量和获取速度提出了很高的要求,而主机、路由器等其他资源信息的获取难度较大,一方面主要是爬取更详细的服务信息存在较大的不确定性,容易导致不同时期爬取所得的信息存在较大的差别,另一方面则是爬取主机、路由器等速度较慢,在本次研究中每次爬取需要耗时9s以上,甚至在100s内都无法返回结果,因而难以满足本次实验对于样本数量规模的要求。


即便如此,仅清华大学和北京大学的服务器信息获取仍然面临数量过大的问题。需要获取的IP地址区段为59.66.0-255.0-255和166.111.0-255.0-255,使用nmap的情况下,每个平均耗时仍然在5s左右,在串行情况下每次更新的总耗时超过110小时,信息量庞大、获取耗时大。


2.3 未能找到的网络资源原因分析


即便基于现实因素和实际需要的考虑,我们选取相对更容易稳定获取的两所高校的服务器信息作为研究对象,但在搜集这部分网络资源的过程中,仍然存在部分资源无法找到的情况。主要原因包括以下三点:


没有主机。寻找到的资源可能是一个空IP,因而无法返回符合要求的服务器信息;


访问权限问题。有些服务器没有完全开放,因而存在对于访问权限的限制,这一点在高校中仍然是比较普遍的,因而访问权限问题同样部分阻碍了获取全部网络资源信息;


防火墙问题。由于目前高校一般都拥有自身的校园网,很多服务器仅面向校园网开放,对于外网设置有防火墙,本研究团队难以获取这些服务器的网络资源。


仍然有其他如网络状况等原因,在此不再列举。尽管有部分网络资源由于种种原因未能获取,但仍然不影响本次研究的推进。


2.4 实验问题


在本次研究过程中,也存在一些难以避免的问题,在研究结束时仍然没有获得理想的解决方案。这些问题的出现,一些是由于网络状况所致,一些则是由于服务器等各种原因所致。主要遇到的问题包括:


nmap稳定性不足。在数据量较大的时候,nmap会存在跑网站不稳定的情况,为了提高数据搜集的效率,在研究所使用的爬取脚本中将时间上限设为120s。而在这种情况下,nmap在获取一些服务器资源的过程中,仍然存在超时的情况,且有些时候超时原因并不明确;


执行条件和服务器状态不稳定。由于执行条件的不稳定,导致返回结果存在很大的差距。如在实验中,同样的指令分别爬取IP和100个IP一起爬取所获得的结果经常完全不同,而即便是100个IP一起爬取,每次爬取所获得的结果有时也是不完全一样的、甚至存在比较大的差别。


这些实验问题的出现导致网络资源的获取并不像预想中顺利;且一些问题出现原因不明也影响了获取的服务器信息的不稳定。


3 网络空间资源的分类


在获取网络空间资源的基础上,本研究团队进行了符合要求的分类。


分类标准需要符合正交性、可用性、完备性等特点,尤其是正交性特点,即所有分类需要涵盖全部信息;基于这一点,我们考虑的几种分类形式均为排他性或采用完全对立的指标。


3.1 分类标准


根据检索得到的数据量,本研究团队采用了如下四种符合要求的分类标准:


基于端口状态。将获取的三万余端口的状态根据返回信息分为open、closed、filtered三类,覆盖全部端口的状态情况;


基于网络资源位置。我们根据服务器的位置,将网络资源的位置分为清华大学、北京大学、中国人民大学、复旦大学、上海交通大学等五类,并将展示的网络资源样本分为清华大学和北京大学两类。这种分类方式看似是预设性的,但是这种分类的原则却并不是局限的,在其他网络资源中基于位置进行分类同样是一种基本的分类标准;


基于网络设备的端口空闲程度。为了评价网络设备的端口空闲程度,我们所衡量的指标为服务器所开放的端口数量,在对我们获取的资源进行分析之后,我们将边界值定为5个,即当开放的端口数大于或等于5个时,我们定义这个网络资源为忙碌资源,相应的,当开放的端口数小于5个时,我们定义这个网络资源为空闲资源;


基于网络设备的服务名称。网络设备所提供的服务有各式各样的名称,仅我们搜集到的数据而言,网络设备的服务名称就达上百个。


3.2 分类结果

3.2.1 基于端口状态


根据检所得到的资源信息来看,北京大学的端口开放数量不足总数量的一半,而清华大学的这一比例接近 70%。


419cb4d1927251787d35407d8ec3e3d3.jpg

图 2 北京大学端口状态情况


f9c0c6367beac32338369a9286c08141.jpg

图 3 清华大学端口状态情况


3.2.2 基于网络资源位置


如前章所展示的情况,清华大学服务器的网络端口数量超过28000个,而北京大学不足清华大学的十分之一,为2500个。


3.2.3 基于网络设备的端口空闲程度


根据我们的分类标准,空闲资源比例大于忙碌资源比例,按照服务器所开放的端口数量来看,开放 1 个端口的情况最为普遍,而开放端口数量最多的服务器所开放的端口数量达到 100 个。

1c94c96a268ffbbe1ea0a374054a0a0e.jpg


图 4 网络设备的端口空闲程度统计表


3.2.4 基于网络设备的服务名称


网络设备所提供的服务名称非常多样,在上百种被统计在内的服务名称中,使用最多的几种服务名称为 unlocked, locked, Ftp, lis, Ms 等。下图根据服务名称出现频次制成。


efa2173671ffb0e9589e990c41fc054c.png

图 5 网络设备的服务名称频次图


4 前端展示及操作


本次研究搭建的展示前端的链接为:


http://www.misscut.cn:8081


4.1 IP 地址检索


点击进入链接后,显示的为“IP地址检索”界面,即可在文本框中直接输入IP地址搜索器所在位置和拥有的端口数量。


67bc43df88ba4d49bf6d94921ee351f2.jpg

检索成功的结果:

aee90b155da6db4cad0d4d65e34b57e3.jpg


检索失败的结果:

55577bb5f6c96adcded8b34b2f1c4262.jpg


4.2 分类检索


分类检索界面可以针对服务器名称、IP地点、服务器状态等信息进行检索。


值得注意的是,在检索时,如果不加限制地检索清华大学的所有服务,会因为数据量较大、前端渲染表格时间长,因而展示效果较差。建议使用该分类检索的时候,在相对较小的范围内搜索。


除此以外,分类检索中服务器忙碌状态和是否加密两项需要至少选择一项方能完成检索。


分类检索界面为:


9f990fe57f703e02117c211a281c1b1b.jpg

按服务器名称选择检索:

4e8cae38a5e620c8ca499ba67c7d663f.jpg


按服务器名称检索得到的结果:


8d4ec16d31b6e8bd572dbcec6a30ad6f.jpg

按IP地点选择搜索:

31b02e66911de263d3409d64c629cbc1.jpg


按IP地点检索得到的结果:

51aebb2010658708324d2c3045e221a1.jpg


按服务器状态选择检索:

420383eb9fa46bcd5918fbbf55f75a16.jpg


按服务器状态检索得到的结果:

c3c5f792850da74f07b25909ef9460b7.jpg


一种相对全面的检索示意:

32fc6fb6976d064e900d9c292f8fa9ad.jpg


另一种相对全面的检索示意:

804b6d09b78055d776cee5658b166b9c.jpg


一种暂无数据结果的检索示意:

2ed1ebf89a7f8112c5e2370b82d6776d.jpg


5 总结


在本次研究中,我们利用nmap手段,基于以高校服务器数据为代表的网络空间资源,提出了符合正交性等要求的四种网络空间资源分类方法,并将获取的服务器信息资源和分类情况的结果以每日更新的方式展现在前端。


完整代码:https://download.csdn.net/download/qq_38735017/87409913


目录
打赏
0
0
0
0
29
分享
相关文章
|
23天前
|
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
2月前
|
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
78 33
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
51 10
HTTP代理服务器在网络安全中的重要性
随着科技和互联网的发展,HTTP代理IP中的代理服务器在企业业务中扮演重要角色。其主要作用包括:保护用户信息、访问控制、缓存内容、负载均衡、日志记录和协议转换,从而在网络管理、性能优化和安全性方面发挥关键作用。
96 2
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
104 8
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
阿里云出手DeepSeek拒绝服务器繁忙,程序员直呼:真香!
阿里云PAI平台支持一键部署DeepSeek-V3和DeepSeek-R1大模型,用户无需编写代码即可完成从训练到部署的全过程。通过PAI Model Gallery,开发者可轻松选择并部署所需模型版本,享受高效、便捷的AI开发体验。教程详细介绍了开通PAI、选择模型及一键部署的具体步骤,帮助用户快速上手。
阿里云gpu云服务器租用价格:最新收费标准及活动价格参考
阿里云gpu云服务器多少钱?A10卡GN7i GPU云服务器32核188G3213.99/1个月起,V100卡GN6v GPU云服务器8核32G3830.00/1个月起,阿里云GPU云服务器是基于GPU应用的计算服务,多适用于视频解码,图形渲染,深度学习,科学计算等应用场景,该产品具有超强计算能力、网络性能出色、购买方式灵活、高性能实例存储( GA1和GN5特有)等特点。下面小编来介绍下阿里云gpu云服务器最新的收费标准及活动价格。
2025年阿里云GPU服务器租用价格、选型策略与应用场景详解
随着AI与高性能计算需求的增长,阿里云提供了多种GPU实例,如NVIDIA V100、A10、T4等,适配不同场景。2025年重点实例中,V100实例GN6v单月3830元起,适合大规模训练;A10实例GN7i单月3213.99元起,适用于混合负载。计费模式有按量付费和包年包月,后者成本更低。针对AI训练、图形渲染及轻量级推理等场景,推荐不同配置以优化成本和性能。阿里云还提供抢占式实例、ESSD云盘等资源优化策略,支持eRDMA网络加速和倚天ARM架构,助力企业在2025年实现智能计算的效率与成本最优平衡。 (该简介为原文内容的高度概括,符合要求的字符限制。)
2025年阿里云GPU服务器的租赁价格与选型指南
随着AI、深度学习等领域的发展,GPU服务器成为企业及科研机构的核心算力选择。阿里云提供多种GPU实例类型(如NVIDIA V100、A100等),涵盖计算型、共享型和弹性裸金属等,满足不同场景需求。本文详解2025年阿里云GPU服务器的核心配置、价格策略及适用场景,帮助用户优化选型与成本控制,实现高效智能计算。

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等