ChIP-seq 分析:Mapped 数据可视化(4)

简介: -

1. Mapped reads

现在我们有了 BAM 文件的索引,我们可以使用 idxstatsBam() 函数检索和绘制映射读取的数量。

mappedReads <- idxstatsBam("SR_Myc_Mel_rep1.bam")
TotalMapped <- sum(mappedReads[, "mapped"])
ggplot(mappedReads, aes(x = seqnames, y = mapped)) + geom_bar(stat = "identity") +
    coord_flip()

TotalMapped

2. bigWig 创建

我们还可以从我们排序的、索引的 BAM 文件中创建一个 bigWig,以允许我们快速查看 IGV 中的数据。

首先,我们使用 coverage() 函数创建一个包含我们的覆盖率分数的 RLElist 对象。

forBigWig <- coverage("SR_Myc_Mel_rep1.bam")
forBigWig

我们现在可以使用 rtracklayer 包的 export.bw() 函数将 RLElist 对象导出为 bigWig。

library(rtracklayer)
export.bw(forBigWig, con = "SR_Myc_Mel_rep1.bw")

我们可能希望标准化我们的覆盖范围,以便我们能够比较样本之间的富集。

我们可以使用 coverage() 中的权重参数将我们的读取缩放到映射读取数乘以一百万(每百万读取数)。

forBigWig <- coverage("SR_Myc_Mel_rep1.bam", weight = (10^6)/TotalMapped)
forBigWig
export.bw(forBigWig, con = "SR_Myc_Mel_rep1_weighted.bw")

SR_Myc_Mel_rep1_weighted.bw

相关文章
|
5月前
|
数据可视化
Signac 单细胞|ATAC-seq Call peak
Signac 单细胞|ATAC-seq Call peak
53 0
Signac 单细胞|ATAC-seq Call peak
|
5月前
|
搜索推荐 Docker 容器
生信分析代码之前还好好的,怎么就报错了 Error in Ops. data. frame(guide_loc, panel_loc) :'==' only defined for equally-sized data frames
执行 `DimPlot` 函数时遇到错误 `;Error in Ops. data. frame(g guides_loc, panel_loc) : &#39;==&#39; only defined for equally-sized data frames`。解决方案和办法
1387 0
生信分析代码之前还好好的,怎么就报错了 Error in Ops. data. frame(guide_loc, panel_loc) :'==' only defined for equally-sized data frames
|
存储 数据采集 分布式计算
实时大数据处理real-time big data processing (RTDP)框架:挑战与解决方案
实时大数据处理real-time big data processing (RTDP)框架:挑战与解决方案
|
数据可视化 数据库
ChIP-seq 分析:Peak 注释与可视化(9)
到目前为止,我们一直在处理对应于转录因子结合的 ChIPseq 峰。顾名思义,转录因子可以影响其靶基因的表达。
485 0
ChIP-seq 分析:Consensus Peaks(14)
ChIP-seq 分析:Consensus Peaks(14)
190 0
ChIP-seq 分析:数据与Peak 基因注释(10)
今天,我们将继续回顾我们在上一次中研究的 Myc ChIPseq。这包括用于 MEL 和 Ch12 细胞系的 Myc ChIPseq。
177 0
|
存储 数据可视化 Linux
ChIP-seq 分析:教程简介(1)
[本课程](https://rockefelleruniversity.github.io/RU_ChIPseq/ "Source")介绍 Bioconductor 中的 ChIPseq 分析。该课程由 4 个部分组成。这将引导您完成正常 ChIPseq 分析工作流程的每个步骤。它涵盖比对、QC、`peak calling`、基因组富集测试、基序富集和差异 ChIP 分析。
315 0
|
存储 Linux Windows
ChIP-seq 分析:Call Peak(8)
ChIP-seq 分析:Call Peak(8)
340 0
|
Ruby
ChIP-seq 分析:数据质控实操(5)
今天将继续回顾我们在上一次中研究的 Myc ChIPseq。这包括用于 MEL 和 Ch12 细胞系的 Myc ChIPseq 及其输入对照。
155 0
|
数据采集 数据可视化 Java
ChIP-seq 分析:原始数据质控(2)
染色质免疫沉淀,然后进行深度测序 (ChIPseq) 是一种成熟的技术,可以在**全基因组范围内识别转录因子结合位点和表观遗传标记**。
237 0