Signac 单细胞|ATAC-seq Call peak

简介: Signac 单细胞|ATAC-seq Call peak

引言

本文将向您展示如何利用MACS2软件,在单细胞ATAC-seq的基因组数据中识别基因调控区域的峰值。

实战

在使用Signac进行峰值检测之前,您需要先安装MACS2。您可以通过pip或conda安装它,或者从源代码自行编译。

本次演示以人类外周血单核细胞的单细胞ATAC-seq数据为例。首先,请加载必要的软件包和预先处理过的Seurat数据对象。

library(Signac)
library(Seurat)

pbmc <- readRDS("../vignette_data/pbmc.rds")
DimPlot(pbmc)

使用 CallPeaks() 函数可以进行峰值检测,这可以针对不同的细胞群体单独进行,或者综合所有细胞的数据来完成。若要在每个已标记的细胞类型上识别峰值,我们可以通过 group.by 参数来实现。

peaks <- CallPeaks(
  object = pbmc,
  group.by = "predicted.id"
)

结果以 GRanges 对象的形式返回,并带有一个附加元数据列,列出了每个峰在其中识别的细胞类型:

要计算每个峰值区域的计数,您可以利用 FeatureMatrix() 函数来实现。

通过 CoveragePlot() 函数,我们可以将特定于细胞类型的 MACS2 峰值检测结果与 10x Cellranger 的峰值检测结果(目前 pbmc 对象中正在使用的)进行可视化对比。在图中,Cellranger 的峰值以灰色表示,而 MACS2 的峰值则以红色标注。

CoveragePlot(
  object = pbmc,
  region = "CD8A",
  ranges = peaks,
  ranges.title = "MACS2"
)

## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_segment()`).

相关文章
|
数据挖掘
Seurat 4.0 | 单细胞转录组数据整合(scRNA-seq integration)
Seurat 4.0 | 单细胞转录组数据整合(scRNA-seq integration)
1738 0
Seurat 4.0 | 单细胞转录组数据整合(scRNA-seq integration)
|
24天前
|
算法 数据挖掘 数据处理
文献解读-Sentieon DNAscope LongRead – A highly Accurate, Fast, and Efficient Pipeline for Germline Variant Calling from PacBio HiFi reads
PacBio® HiFi 测序是第一种提供经济、高精度长读数测序的技术,其平均读数长度超过 10kb,平均碱基准确率达到 99.8% 。在该研究中,研究者介绍了一种准确、高效的 DNAscope LongRead 管道,用于从 PacBio® HiFi 读数中调用胚系变异。DNAscope LongRead 是对 Sentieon 的 DNAscope 工具的修改和扩展,该工具曾获美国食品药品管理局(FDA)精密变异调用奖。
25 2
文献解读-Sentieon DNAscope LongRead – A highly Accurate, Fast, and Efficient Pipeline for Germline Variant Calling from PacBio HiFi reads
|
3月前
|
机器学习/深度学习 存储 算法
【博士每天一篇文献-算法】Memory augmented echo state network for time series prediction
本文介绍了一种记忆增强的回声状态网络(MA-ESN),它通过在储层中引入线性记忆模块和非线性映射模块来平衡ESN的记忆能力和非线性映射能力,提高了时间序列预测的性能,并在多个基准数据集上展示了其优越的记忆能力和预测精度。
29 3
【博士每天一篇文献-算法】Memory augmented echo state network for time series prediction
|
3月前
|
存储 机器学习/深度学习 算法
【博士每天一篇文献-算法】A biologically inspired dual-network memory model for reduction of catastrophic
本文介绍了一种受生物学启发的双网络记忆模型,由海马网络和新皮层网络组成,通过模拟海马CA3区的混沌行为和齿状回区的神经元更替,以及新皮层网络中的伪模式学习,有效减少了神经网络在学习新任务时的灾难性遗忘问题。
30 4
|
5月前
|
数据可视化 Java 数据处理
单细胞|RNA-seq & ATAC-seq 联合分析
单细胞|RNA-seq & ATAC-seq 联合分析
62 3
|
6月前
|
机器学习/深度学习 SQL 数据可视化
单细胞分析(Signac): PBMC scATAC-seq 整合
单细胞分析(Signac): PBMC scATAC-seq 整合
73 0
|
6月前
|
数据可视化 数据挖掘 Serverless
单细胞分析(Signac): PBMC scATAC-seq 聚类
单细胞分析(Signac): PBMC scATAC-seq 聚类
52 0
|
6月前
|
存储 移动开发 Shell
单细胞分析(Signac): PBMC scATAC-seq 预处理
单细胞分析(Signac): PBMC scATAC-seq 预处理
81 2
|
6月前
|
存储 编解码 数据可视化
单细胞分析|整合 scRNA-seq 和 scATAC-seq 数据
单细胞分析|整合 scRNA-seq 和 scATAC-seq 数据
94 0
|
6月前
|
存储 数据可视化 数据挖掘
scRNA-seq|Seurat 整合分析
scRNA-seq|Seurat 整合分析
133 0