ChIP-seq 分析:数据质控实操(5)

简介: 今天将继续回顾我们在上一次中研究的 Myc ChIPseq。这包括用于 MEL 和 Ch12 细胞系的 Myc ChIPseq 及其输入对照。

1. 数据

  • 可在此处找到 MEL 细胞系中 Myc ChIPseq 的信息和文件
  • 可在此处找到 Ch12 细胞系中 Myc ChIPseq 的信息和文件
  • 可以在此处找到 MEL 细胞系的输入控制
  • 可在此处找到 Ch12 细胞系的输入对照。

2. 质量控制

ChIPseq 有许多潜在噪声源,包括 抗体的不同效率 非特异性结合 文库复杂性 ChIP 伪影和背景。

许多这些噪声源都可以使用一些完善的方法进行评估。

2.1. 质控参考

  • Encode 质量指标。

Large-scale quality analysis of published ChIPseq data. Marinov GK, Kundaje A, Park PJ, Wold BJ. G3 (Bethesda). 2014 Feb 19;4(2)

  • ChIPseq 中人工制品重复的高估。

Systematic evaluation of factors influencing ChIPseq fidelity.Nat Methods. Chen Y, Negre N, Li Q, Mieczkowska JO, Slattery M, Liu T, Zhang Y, Kim TK, He HH, Zieba J, Ruan Y, Bickel PJ, Myers RM, Wold BJ, White KP, Lieb JD, Liu XS. 2012 Jun;9(6)

  • 什么时候 QC 有用。

Impact of artifact removal on ChIP quality metrics in ChIPseq and ChIP-exo data.Front Genet. 2014 Apr 10;5:75.Carroll TS, Liang Z, Salama R, Stark R, de Santiago I

2.2. 合适的输入

  • 在 IP 富集之前,输入样本通常由片段化的 DNA 制成。
  • 允许控制样本中出现的伪影区域。
  • 切勿在不考虑使用哪个输入的情况下运行 ChIPseq。

例如:当使用肿瘤样本进行 ChIPseq 时,匹配输入样本很重要。同一组织的不同条件可能共享共同的输入。

2.3. 质量指标

ChIPQC 包将一些指标包装到 Bioconductor 包中,并注意在适当的条件下测量这些指标。

要运行单个样本,我们可以使用 ChIPQCsample() 函数、相关的未过滤 BAM 文件,我们建议提供黑名单作为 BED 文件或 GRanges 和基因组名称。

您可以在 Anshul Kundaje 的网站或直接从 Encode 网站找到大多数基因组的黑名单

QCresult <- ChIPQCsample(reads = "/pathTo/myChIPreads.bam", genome = "mm10", blacklist = "/pathTo/mm10_Blacklist.bed")

我们从 Encode 下载 mm10 的黑名单。然后,我们可以使用 ChIPQC 包中的 ChIPQCsample() 函数对我们的 ChIPseq 样本质量进行初步分析。

在这里,我们评估我们在之前的会话中使用 Rsubread 对齐的样本的质量。返回的对象是 ChIPQCsample 对象。

library(ChIPQC)
toBlkList <- "~/Downloads/ENCFF547MET.bed.gz"
chipqc_MycMel_rep1 <- ChIPQCsample("SR_Myc_Mel_rep1.bam", annotation = "mm10", blacklist = toBlkList,
    chromosomes = paste0("chr", 1:10))
class(chipqc_MycMel_rep1)

chipqc_MycMel_rep1

我们可以显示我们的 ChIPQCsample 对象,它将显示我们的 ChIPseq 质量的基本摘要。

chipqc_MycMel_rep1

chipqc_MycMel_rep1

2.4. 多样本QC

最好对照您的输入对照和我们正在使用的其他 Myc 样本(如果您没有自己的数据,甚至是外部数据)检查 ChIPseq 质量。

这将使我们能够识别样本与对照中 ChIPseq 富集的预期模式,并通过这些指标发现任何异常样本。

我们可以使用 lapply 对所有感兴趣的样本运行 ChIPQCsample()。

bamsToQC <- c("Sorted_Myc_Ch12_1.bam", "Sorted_Myc_Ch12_2.bam", "Sorted_Myc_MEL_1.bam",
    "Sorted_Myc_MEL_2.bam", "Sorted_Input_MEL.bam", "Sorted_Input_Ch12.bam")
myQC <- bplapply(bamsToQC, ChIPQCsample, annotation = "mm10", blacklist = toBlkList,
    chromosomes = paste0("chr", 1:10))
names(myQC) <- bamsToQC

所有 ChIPQC 函数都可以与 ChIPQCsample 对象的命名列表一起使用,以将分数聚合到表和图中。

在这里,我们使用 QCmetrics() 函数来概述质量指标。

QCmetrics(myQC)

myQC

相关文章
|
7月前
|
存储 Shell 索引
单细胞分析(Signac): PBMC scATAC-seq 质控
单细胞分析(Signac): PBMC scATAC-seq 质控
69 0
|
7月前
|
存储
R语言结构方程SEM中的power analysis 效能检验分析
R语言结构方程SEM中的power analysis 效能检验分析
|
数据可视化 数据挖掘 Go
RNA-seq丨转录组分析标准流程与常用工具
RNA-seq丨转录组分析标准流程与常用工具
|
数据挖掘
RNA-seq数据分析二:DESeq2 筛选差异基因
RNA-seq数据分析二:DESeq2 筛选差异基因
|
数据采集 数据可视化 Java
ChIP-seq 分析:原始数据质控(2)
染色质免疫沉淀,然后进行深度测序 (ChIPseq) 是一种成熟的技术,可以在**全基因组范围内识别转录因子结合位点和表观遗传标记**。
226 0
ChIP-seq 分析:文库的复杂性和丰富性(7)
ChIPseq 中的一个潜在噪声源是 ChIPseq 库在 PCR 步骤中的过度放大。这可能会导致大量重复读取,从而混淆峰值调用。
110 0
ChIP-seq 分析:数据与Peak 基因注释(10)
今天,我们将继续回顾我们在上一次中研究的 Myc ChIPseq。这包括用于 MEL 和 Ch12 细胞系的 Myc ChIPseq。
174 0
|
存储 数据安全/隐私保护 C++
C++编程医院医学影像系统PACS,包含使用手册和CT操作说明书
首先,PACS系统可实现三维重建、检查预约、病人信息登记、计算机阅片、电子报告书写、胶片打印、数据备份等一系列满足影像科室日常工作的功能,并且由于影像数字化存储,用户可利用影像处理与测量技术辅助诊断、方便快捷地查找资料或利用网络将资料传输至临床科室,还可与医院HIS、LIS无缝连接。
268 0
|
数据可视化 数据库
ChIP-seq 分析:Peak 注释与可视化(9)
到目前为止,我们一直在处理对应于转录因子结合的 ChIPseq 峰。顾名思义,转录因子可以影响其靶基因的表达。
464 0
|
算法 索引
ChIP-seq 分析:数据比对(3)
ChIP-seq 分析:数据比对(3)
259 0