并发与并行,同步和异步,Go lang1.18入门精炼教程,由白丁入鸿儒,Go lang并发编程之GoroutineEP13

简介: 如果说Go lang是静态语言中的皇冠,那么,Goroutine就是并发编程方式中的钻石。Goroutine是Go语言设计体系中最核心的精华,它非常轻量,一个 Goroutine 只占几 KB,并且这几 KB 就足够 Goroutine 运行完,这就能在有限的内存空间内支持大量 Goroutine协程任务,方寸之间,运筹帷幄,用极少的成本获取最高的效率,支持了更多的并发,毫无疑问,Goroutine是比Python的协程原理事件循环更高级的并发异步编程方式。

如果说Go lang是静态语言中的皇冠,那么,Goroutine就是并发编程方式中的钻石。Goroutine是Go语言设计体系中最核心的精华,它非常轻量,一个 Goroutine 只占几 KB,并且这几 KB 就足够 Goroutine 运行完,这就能在有限的内存空间内支持大量 Goroutine协程任务,方寸之间,运筹帷幄,用极少的成本获取最高的效率,支持了更多的并发,毫无疑问,Goroutine是比Python的协程原理事件循环更高级的并发异步编程方式。

GMP调度模型(Goroutine-Machine-Processor)

为什么Goroutine比Python的事件循环高级?是因为Go lang的调度模型GMP可以参与系统内核线程中的调度,这里G为Goroutine,是被调度的最小单元;M是系统起了多少个线程;P为Processor,也就是CPU处理器,调度器的核心处理器,通常表示执行上下文,用于匹配 M 和 G 。P 的数量不能超过 GOMAXPROCS 配置数量,这个参数的默认值为当前电脑的总核心数,通常一个 P 可以与多个 M 对应,但同一时刻,这个 P 只能和其中一个 M 发生绑定关系;M 被创建之后需要自行在 P 的 free list 中找到 P 进行绑定,没有绑定 P 的 M,会进入阻塞状态,每一个P最多关联256个G。

说白了,就是GMP和Python一样,也是维护一个任务队列,只不过这个任务队列是通过Goroutine来调度,怎么调度?通过Goroutine和系统线程M的协商,寻找非阻塞的通道,进入P的本地小队列,然后交给系统内的CPU执行,藉此,充分利用了CPU的多核资源。

而Python的协程方式仅仅停留在用户态,它没法参与到线程内核的调度,弥补方式是单线程多协程任务下开多进程,Go lang则是全权交给Goroutine,用户不需要参与底层操作,同时又可以利用CPU的多核资源。

启动Goroutine

首先默认情况下,golang程序还是由上自下的串行方式:

package main  
  
import (  
    "fmt"  
)  
  
func job() {  
    fmt.Println("任务执行")  
}  
func main() {  
    job()  
    fmt.Println("任务执行完了")  
}

程序返回:

任务执行  
任务执行完了

这里job中的打印函数是先于main中的打印函数。

现在,在执行job函数前面加上关键字go,也就是启动一个goroutine去执行job这个函数:

package main  
  
import (  
    "fmt"  
    "time"  
)  
  
func job() {  
    fmt.Println("任务执行")  
}  
func main() {  
    go job()  
    fmt.Println("任务执行完了")  
    time.Sleep(time.Second)  
}

注意,开启Goroutine是在函数执行的时候开启,并非声明的时候,程序返回:



任务执行完了  
任务执行

可以看到,执行顺序颠倒了过来,首先为什么会先打印任务执行完了,是因为系统在创建新的Goroutine的时候需要耗费一些资源,因为就算只有几kb,也需要时间来创建,而此时main函数所在的goroutine是继续执行的。

第二,为什么要人为的把main函数延迟一秒钟?

因为当main()函数返回的时候main所在的Goroutine就结束了,所有在main()函数中启动的goroutine会一同结束,所以这里必须人为的“阻塞”一下main函数,让它后于job结束,有点像公园如果要关门必须等最后一个游客走了才能关,否则就把游客关在公园里了,出不去了。

与此同时,此逻辑和Python中的线程阻塞逻辑非常一致,用过Python多线程的朋友肯定知道要想让所有子线程都执行完毕,必须阻塞主线程,不能让主线程提前执行完,这和Goroutine有异曲同工之妙。

在Go lang中实现并发编程就是如此轻松,我们还可以启动多个Goroutine:



package main  
  
import (  
    "fmt"  
    "sync"  
)  
  
var wg sync.WaitGroup  
  
func job(i int) {  
    defer wg.Done() // 协程结束就通知  
    fmt.Println("协程任务执行", i)  
}  
func main() {  
  
    for i := 0; i < 10; i++ {  
        wg.Add(1) // 启动协程任务后入队  
        go job(i)  
    }  
    wg.Wait() // 等待所有登记的goroutine都结束  
  
    fmt.Println("所有任务执行完毕")  
}  


程序返回:



协程任务执行 8  
协程任务执行 9  
协程任务执行 5  
协程任务执行 0  
协程任务执行 1  
协程任务执行 4  
协程任务执行 7  
协程任务执行 2  
协程任务执行 3  
协程任务执行 6  
所有任务执行完毕

这里我们摒弃了相对土鳖的time.Sleep(time.Second)方式,而是采用sync包的WaitGroup方式,原理是当启动协程任务后,在WaitGroup登记,当每个协程任务执行完成后,通知WaitGroup,直到所有的协程任务都执行完毕,然后再执行main函数所在的协程,所以“所有任务执行完毕”会在所有协程任务执行完毕后再打印。

和Python协程区别

我们再来看看,如果是Python,会怎么做?



import asyncio  
import random  
  
async def job(i):  
  
    print("协程任务执行{}".format(i))  
    await asyncio.sleep(random.randint(1,5))  
    print("协程任务结束{}".format(i))  
  
  
  
async def main():  
  
    tasks = [asyncio.create_task(job(i)) for i in range(10)]  
      
    res = await asyncio.gather(*tasks)  
  
  
if __name__ == '__main__':  
    asyncio.run(main())

程序返回:

协程任务执行0  
协程任务执行1  
协程任务执行2  
协程任务执行3  
协程任务执行4  
协程任务执行5  
协程任务执行6  
协程任务执行7  
协程任务执行8  
协程任务执行9  
协程任务结束0  
协程任务结束1  
协程任务结束3  
协程任务结束6  
协程任务结束9  
协程任务结束8  
协程任务结束2  
协程任务结束4  
协程任务结束5  
协程任务结束7

可以看到,Python协程工作的前提是,必须在同一个事件循环中,同时逻辑内必须由用户来手动切换,才能达到“并发”的工作方式,假设,如果我们不手动切换呢?

import asyncio  
import random  
  
async def job(i):  
  
    print("协程任务执行{}".format(i))  
    print("协程任务结束{}".format(i))  
  
  
  
async def main():  
  
    tasks = [asyncio.create_task(job(i)) for i in range(10)]  
      
    res = await asyncio.gather(*tasks)  
  
  
if __name__ == '__main__':  
    asyncio.run(main())

程序返回:

协程任务执行0  
协程任务结束0  
协程任务执行1  
协程任务结束1  
协程任务执行2  
协程任务结束2  
协程任务执行3  
协程任务结束3  
协程任务执行4  
协程任务结束4  
协程任务执行5  
协程任务结束5  
协程任务执行6  
协程任务结束6  
协程任务执行7  
协程任务结束7  
协程任务执行8  
协程任务结束8  
协程任务执行9  
协程任务结束9

一望而知,只要你不手动切任务,它就立刻回到了“串行”的工作方式,同步的执行任务,那么协程的意义在哪儿呢?

所以,归根结底,Goroutine除了可以极大的利用系统多核资源,它还能帮助开发者来切换协程任务,简化开发者的工作,说白了就是,不懂协程工作原理,也能照猫画虎写go lang代码,但如果不懂协程工作原理的前提下,写Python协程并发逻辑呢?恐怕够呛吧。

结语

综上,Goroutine的工作方式,就是多个协程在多个线程上切换,既可以用到多核,又可以减少切换开销。但有光就有影,有利就有弊,Goroutine确实不需要开发者过度参与,但这样开发者就少了很多自由度,一些定制化场景下,就只能采用单一的Goroutine手段,比如一些纯IO密集型任务场景,像爬虫,你有多少cpu的意义并不大,因为cpu老是等着你的io操作,所以Python这种协程工作方式在纯IO密集型任务场景下并不逊色于Goroutine。

相关文章
|
27天前
|
并行计算 安全 Go
Go语言中的并发编程:掌握goroutines和channels####
本文深入探讨了Go语言中并发编程的核心概念——goroutine和channel。不同于传统的线程模型,Go通过轻量级的goroutine和通信机制channel,实现了高效的并发处理。我们将从基础概念开始,逐步深入到实际应用案例,揭示如何在Go语言中优雅地实现并发控制和数据同步。 ####
|
1月前
|
存储 Go 开发者
Go语言中的并发编程与通道(Channel)的深度探索
本文旨在深入探讨Go语言中并发编程的核心概念和实践,特别是通道(Channel)的使用。通过分析Goroutines和Channels的基本工作原理,我们将了解如何在Go语言中高效地实现并行任务处理。本文不仅介绍了基础语法和用法,还深入讨论了高级特性如缓冲通道、选择性接收以及超时控制等,旨在为读者提供一个全面的并发编程视角。
|
28天前
|
安全 Serverless Go
Go语言中的并发编程:深入理解与实践####
本文旨在为读者提供一个关于Go语言并发编程的全面指南。我们将从并发的基本概念讲起,逐步深入到Go语言特有的goroutine和channel机制,探讨它们如何简化多线程编程的复杂性。通过实例演示和代码分析,本文将揭示Go语言在处理并发任务时的优势,以及如何在实际项目中高效利用这些特性来提升性能和响应速度。无论你是Go语言的初学者还是有一定经验的开发者,本文都将为你提供有价值的见解和实用的技巧。 ####
|
1月前
|
Go 调度 开发者
Go语言中的并发编程:深入理解goroutines和channels####
本文旨在探讨Go语言中并发编程的核心概念——goroutines和channels。通过分析它们的工作原理、使用场景以及最佳实践,帮助开发者更好地理解和运用这两种强大的工具来构建高效、可扩展的应用程序。文章还将涵盖一些常见的陷阱和解决方案,以确保在实际应用中能够避免潜在的问题。 ####
|
1月前
|
安全 Go 数据处理
Go语言中的并发编程:掌握goroutine和channel的艺术####
本文深入探讨了Go语言在并发编程领域的核心概念——goroutine与channel。不同于传统的单线程执行模式,Go通过轻量级的goroutine实现了高效的并发处理,而channel作为goroutines之间通信的桥梁,确保了数据传递的安全性与高效性。文章首先简述了goroutine的基本特性及其创建方法,随后详细解析了channel的类型、操作以及它们如何协同工作以构建健壮的并发应用。此外,还介绍了select语句在多路复用中的应用,以及如何利用WaitGroup等待一组goroutine完成。最后,通过一个实际案例展示了如何在Go中设计并实现一个简单的并发程序,旨在帮助读者理解并掌
|
1月前
|
安全 Java Go
Go语言中的并发编程:掌握goroutine与通道的艺术####
本文深入探讨了Go语言中的核心特性——并发编程,通过实例解析goroutine和通道的高效使用技巧,旨在帮助开发者提升多线程程序的性能与可靠性。 ####
|
1月前
|
Go 开发者
Go语言中的并发编程:掌握goroutines和channels####
本文深入探讨了Go语言中并发编程的核心概念,重点介绍了goroutines和channels的工作原理及其在实际开发中的应用。文章通过实例演示如何有效地利用这些工具来编写高效、可维护的并发程序,旨在帮助读者理解并掌握Go语言在处理并发任务时的强大能力。 ####
|
1月前
|
算法 安全 程序员
Go语言的并发编程:深入理解与实践####
本文旨在探讨Go语言在并发编程方面的独特优势及其实现机制,通过实例解析关键概念如goroutine和channel,帮助开发者更高效地利用Go进行高性能软件开发。不同于传统的摘要概述,本文将以一个简短的故事开头,引出并发编程的重要性,随后详细阐述Go语言如何简化复杂并发任务的处理,最后通过实际案例展示其强大功能。 --- ###
|
1月前
|
存储 安全 Go
Go 语言以其高效的并发编程能力著称,主要依赖于 goroutines 和 channels 两大核心机制
Go 语言以其高效的并发编程能力著称,主要依赖于 goroutines 和 channels 两大核心机制。本文介绍了这两者的概念、用法及如何结合使用,实现任务的高效并发执行与数据的安全传递,强调了并发编程中的注意事项,旨在帮助开发者更好地掌握 Go 语言的并发编程技巧。
35 2
|
1月前
|
存储 负载均衡 监控
如何利用Go语言的高效性、并发支持、简洁性和跨平台性等优势,通过合理设计架构、实现负载均衡、构建容错机制、建立监控体系、优化数据存储及实施服务治理等步骤,打造稳定可靠的服务架构。
在数字化时代,构建高可靠性服务架构至关重要。本文探讨了如何利用Go语言的高效性、并发支持、简洁性和跨平台性等优势,通过合理设计架构、实现负载均衡、构建容错机制、建立监控体系、优化数据存储及实施服务治理等步骤,打造稳定可靠的服务架构。
36 1