分类网络知识蒸馏【附代码】

简介: 笔记

知识蒸馏属于模型的压缩一种方法,但其实这种方法又属于一种伪压缩,是将一个性能较好的teacher网络“压缩”进一个性能较差的student网络中,或者是可类似于在teacher的指导下让student进行学习进而提高性能。


知识蒸馏是一种思想,并不像其他压缩方法有现成的库,因此对于实际需求与场景需要自己去实现。蒸馏也分为“离线”蒸馏与“在线”蒸馏。前者是建立T-S进行KD训练,而后者可以说是一种自学习,让student自己做自己的teacher。


同时蒸馏还分为逻辑蒸馏和特征蒸馏,前者是在两个网络最终输出部分建立loss关系,而后者是在网络中间的某些特征部分建立loss进行蒸馏。


本文是以手写数字为例,teacher选用的resnet18,student选用的resnet50【大家可能会想resnet50比resnet18强啊,为啥resnet50是student,这是因为我在实际测试的时候发现在手写数字这个数据上resnet18的准确率比resnet50高,猜测是因为在低分辨率下resnet50虽然loss在下降,但由于网络较深,特征丢失也明显,网络退化较明显】。当然这里你也可以尝试resnet做teacher,mobilnet做student【我这样训练了一下发现对mobilnet提升变化不大】


注:这里不做模型和蒸馏改进,仅仅是给大家展示一下效果,至于更细化的蒸馏有兴趣的可以自己去研究。【有关目标检测方面的KD 训练,我将会在明年以后推出】



teacher train代码


参数说明:

teacher_model:选用的teacher网络

train_loader:训练集

test_loader:测试集

loss_func:损失函数

epochs:训练迭代数

def teacher_train(teacher_model, train_loader, test_loader, loss_func, epochs):
    teacher_model.train()
    teacher_model.cuda()
    # train
    for i in range(epochs):
        for data, label in train_loader:
            data = data.to(device)
            label = label.to(device)
            output = teacher_model(data)
            loss = loss_func(output, label)
            optimizer_teacher.zero_grad()
            loss.backward()
            optimizer_teacher.step()
        print("loss: ", loss)
        # eval
        correct = 0
        teacher_model.eval()
        teacher_model.cuda()
        for test_data, test_label in test_loader:
            test_data = test_data.to(device)
            test_label = test_label.to(device)
            with torch.no_grad():
                output = teacher_model(test_data)
                # acc = torch.mean((torch.argmax(F.softmax(output, dim=-1), dim=-1) == test_label).type(torch.FloatTensor))
                # print("teacher acc: ", acc)
                _, pred = torch.max(output, dim=1)
                correct += float(torch.sum(pred == test_label))
        print('test_acc:{}'.format(correct / len(test_dataset)))
    return teacher_model

训练结果(我只训练了5轮):

teacher model train
loss:  tensor(0.0891, device='cuda:0', grad_fn=<NllLossBackward>)
test_acc:0.9845
loss:  tensor(0.0132, device='cuda:0', grad_fn=<NllLossBackward>)
test_acc:0.9865
loss:  tensor(0.0019, device='cuda:0', grad_fn=<NllLossBackward>)
test_acc:0.9909
loss:  tensor(0.0042, device='cuda:0', grad_fn=<NllLossBackward>)
test_acc:0.9909
loss:  tensor(0.0034, device='cuda:0', grad_fn=<NllLossBackward>)
test_acc:0.9917
teacher model trained finished!

student未KD 训练


参数说明:

student_model:选用的student网络

train_loader:训练集

test_loader:测试集

loss_func:损失函数

epochs:训练迭代数

def student_train(student_model, train_loader, test_loader, loss_func, epochs):
    student_model.train()
    student_model.cuda()
    # train
    for i in range(epochs):
        for data, label in train_loader:
            data = data.to(device)
            label = label.to(device)
            output = student_model(data)
            loss = loss_func(output, label)
            optimizer_student.zero_grad()
            loss.backward()
            optimizer_student.step()
        print("student loss: ", loss)
        # eval
        correct = 0
        student_model.eval()
        student_model.cuda()
        for test_data, test_label in test_loader:
            test_data = test_data.to(device)
            test_label = test_label.to(device)
            with torch.no_grad():
                output = student_model(test_data)
                # acc = torch.mean((torch.argmax(F.softmax(output, dim=-1), dim=-1) == test_label).type(torch.FloatTensor))
                # print("teacher acc: ", acc)
                _, pred = torch.max(output, dim=1)
                correct += float(torch.sum(pred == test_label))
        print('student test_acc:{}'.format(correct / len(test_dataset)))

没有KD train的效果如下:

student model ready train
student loss:  tensor(0.1876, device='cuda:0', grad_fn=<NllLossBackward>)
student test_acc:0.9588
student loss:  tensor(0.0219, device='cuda:0', grad_fn=<NllLossBackward>)
student test_acc:0.9737
student loss:  tensor(0.0588, device='cuda:0', grad_fn=<NllLossBackward>)
student test_acc:0.9812
student loss:  tensor(0.0024, device='cuda:0', grad_fn=<NllLossBackward>)
student test_acc:0.9853
student loss:  tensor(0.0022, device='cuda:0', grad_fn=<NllLossBackward>)
student test_acc:0.9814
 student model trained finished!

KD train代码


参数说明:

teacher_model:为已经训练好的teacher

student_model:待KD的student网络

train_loader:训练集

test_loader:测试集

def KD_train(teacher_model, student_model, train_loader, test_loader,loss_func, epochs):
    teacher_model.eval()
    student_model.train()
    student_model.cuda()
    HL = nn.CrossEntropyLoss()
    for i in range(epochs):
        for data, labels in train_loader:
            data = data.to(device)
            labels = labels.to(device)
            teacher_output = teacher_model(data)
            student_output = student_model(data)
            soft_loss = KD_loss(teacher_output, student_output)
            hard_loss = HL(student_output, labels)
            loss = hard_loss + alpha*soft_loss
            optimizer_student.zero_grad()
            loss.backward()
            optimizer_student.step()
        print("KD loss: ", loss)
        student_model.eval()
        ACC = 0
        for data, labels in test_loader:
            with torch.no_grad():
                data = data.to(device)
                labels = labels.to(device)
                output = student_model(data)
                _, pred = torch.max(output, dim=1)
                ACC += float(torch.sum(pred == labels))
        print('KD test_acc:{}'.format(ACC / len(test_dataset)))

代码中的teacher_output是teacher网络的输出,student_output是student的输出,两者之间设计的KD_loss代码如下:


KD_loss代码:

Temp为温度系数,默认为2【可以根据自己的数据集去尝试】


alpha是hard与soft的平衡系数【默认0.5,也是根据自己的实际情况调整】


损失函数采用的KL,你也可以改为交叉熵。

Temp = 2.  # 温度常数
alpha = 0.5
def KD_loss(p, q):  # p指的老师老师的预测(经过softmax),q是学生的预测
    pt = F.softmax(p / Temp, dim=1)
    ps = F.log_softmax(q / Temp, dim=1)
    return nn.KLDivLoss(reduction='mean')(ps, pt) * (Temp**2)

KD tran后student结果:

KD loss:  tensor(0.2580, device='cuda:0', grad_fn=<AddBackward0>)
KD test_acc:0.9753
KD loss:  tensor(0.1686, device='cuda:0', grad_fn=<AddBackward0>)
KD test_acc:0.9748
KD loss:  tensor(0.0827, device='cuda:0', grad_fn=<AddBackward0>)
KD test_acc:0.9849
KD loss:  tensor(0.0098, device='cuda:0', grad_fn=<AddBackward0>)
KD test_acc:0.9865
KD loss:  tensor(0.0114, device='cuda:0', grad_fn=<AddBackward0>)
KD test_acc:0.988

可以看出经过KD训练后student略有提升【主要手写数字这个太容易训练,稍微一训练就可以有较高的准确率】,如果换成别的数据集【比如猫狗数据集可能会明显点,可以自己试试】。


如果要换teacher和student网络,只需要在代码中将teacher_model和student_model网络进行替换即可。


完整代码


目标检测方面的KD比较麻烦,这个以后再讲。

import torch
from torch.optim import Adam, SGD
import torch.nn.functional as F
import torch.nn as nn
from torchvision.models import resnet50, resnet34, resnet18, MobileNetV2
import torchvision
import torchvision.transforms as transforms
Temp = 2.  # 温度常数
alpha = 0.5
def KD_loss(p, q):  # p指的老师老师的预测(经过softmax),q是学生的预测
    pt = F.softmax(p / Temp, dim=1)
    ps = F.log_softmax(q / Temp, dim=1)
    return nn.KLDivLoss(reduction='mean')(ps, pt) * (Temp**2)
def teacher_train(teacher_model, train_loader, test_loader, loss_func, epochs):
    teacher_model.train()
    teacher_model.cuda()
    # train
    for i in range(epochs):
        for data, label in train_loader:
            data = data.to(device)
            label = label.to(device)
            output = teacher_model(data)
            loss = loss_func(output, label)
            optimizer_teacher.zero_grad()
            loss.backward()
            optimizer_teacher.step()
        print("loss: ", loss)
        # eval
        correct = 0
        teacher_model.eval()
        teacher_model.cuda()
        for test_data, test_label in test_loader:
            test_data = test_data.to(device)
            test_label = test_label.to(device)
            with torch.no_grad():
                output = teacher_model(test_data)
                # acc = torch.mean((torch.argmax(F.softmax(output, dim=-1), dim=-1) == test_label).type(torch.FloatTensor))
                # print("teacher acc: ", acc)
                _, pred = torch.max(output, dim=1)
                correct += float(torch.sum(pred == test_label))
        print('test_acc:{}'.format(correct / len(test_dataset)))
    return teacher_model
def student_train(student_model, train_loader, test_loader, loss_func, epochs):
    student_model.train()
    student_model.cuda()
    # train
    for i in range(epochs):
        for data, label in train_loader:
            data = data.to(device)
            label = label.to(device)
            output = student_model(data)
            loss = loss_func(output, label)
            optimizer_student.zero_grad()
            loss.backward()
            optimizer_student.step()
        print("student loss: ", loss)
        # eval
        correct = 0
        student_model.eval()
        student_model.cuda()
        for test_data, test_label in test_loader:
            test_data = test_data.to(device)
            test_label = test_label.to(device)
            with torch.no_grad():
                output = student_model(test_data)
                # acc = torch.mean((torch.argmax(F.softmax(output, dim=-1), dim=-1) == test_label).type(torch.FloatTensor))
                # print("teacher acc: ", acc)
                _, pred = torch.max(output, dim=1)
                correct += float(torch.sum(pred == test_label))
        print('student test_acc:{}'.format(correct / len(test_dataset)))
def KD_train(teacher_model, student_model, train_loader, test_loader,loss_func, epochs):
    teacher_model.eval()
    student_model.train()
    student_model.cuda()
    HL = nn.CrossEntropyLoss()
    for i in range(epochs):
        for data, labels in train_loader:
            data = data.to(device)
            labels = labels.to(device)
            teacher_output = teacher_model(data)
            student_output = student_model(data)
            soft_loss = KD_loss(teacher_output, student_output)
            hard_loss = HL(student_output, labels)
            loss = hard_loss + alpha*soft_loss
            optimizer_student.zero_grad()
            loss.backward()
            optimizer_student.step()
        print("KD loss: ", loss)
        student_model.eval()
        ACC = 0
        for data, labels in test_loader:
            with torch.no_grad():
                data = data.to(device)
                labels = labels.to(device)
                output = student_model(data)
                _, pred = torch.max(output, dim=1)
                ACC += float(torch.sum(pred == labels))
        print('KD test_acc:{}'.format(ACC / len(test_dataset)))
def do_train(teacher_model, student_model, train_loader, test_loader, loss_func, epochs):
    #教师训练
    teacher_model.train()
    teacher_model.to(device)
    print("teacher model train")
    Teacher = teacher_train(teacher_model, train_loader, test_loader, loss_func, epochs)
    print("teacher model trained finished!")
    # print("\n student model ready train")
    # student_train(student_model, train_loader, test_loader, loss_func, epochs)
    # print("\n student model trained finished!")
    print("\n KD model ready train")
    KD_train(Teacher, student_model, train_loader, test_loader, loss_func, epochs)
if __name__=="__main__":
    # 准备数据集
    batch_size = 64
    train_dataset = torchvision.datasets.MNIST('./data/', train=True, download=True,
                                               transform=transforms.Compose([
                                                   transforms.Resize(28),
                                                   transforms.ToTensor(),
                                                   transforms.Lambda(lambda x: x.repeat(3, 1, 1)),
                                                   transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
                                                   transforms.Grayscale(num_output_channels=3)
                                               ])
                                               )
    test_dataset = torchvision.datasets.MNIST('./data/', train=False, download=True,
                                              transform=transforms.Compose([
                                                  transforms.Resize(28),  # resnet默认图片输入大小224*224
                                                  transforms.ToTensor(),
                                                  transforms.Lambda(lambda x: x.repeat(3, 1, 1)),
                                                  transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
                                                  transforms.Grayscale(num_output_channels=3)
                                              ])
                                              )
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
    sample, label = next(iter(train_loader))
    print(sample.shape)
    print("当前类: ", label)
    num_classes = 10
    lr = 0.01
    epochs = 5
    device = torch.device('cuda:0')
    teacher_model = resnet18(num_classes=num_classes)
    student_model = resnet50(num_classes=num_classes)
    optimizer_teacher = SGD(teacher_model.parameters(), lr=lr, momentum=0.9)
    optimizer_student = SGD(student_model.parameters(), lr=lr, momentum=0.9)
    loss_function = nn.CrossEntropyLoss()
    do_train(teacher_model, student_model, train_loader, test_loader, loss_function, epochs)


目录
相关文章
|
9天前
|
机器学习/深度学习 自然语言处理 算法
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
|
1月前
|
机器学习/深度学习 JSON PyTorch
图神经网络入门示例:使用PyTorch Geometric 进行节点分类
本文介绍了如何使用PyTorch处理同构图数据进行节点分类。首先,数据集来自Facebook Large Page-Page Network,包含22,470个页面,分为四类,具有不同大小的特征向量。为训练神经网络,需创建PyTorch Data对象,涉及读取CSV和JSON文件,处理不一致的特征向量大小并进行归一化。接着,加载边数据以构建图。通过`Data`对象创建同构图,之后数据被分为70%训练集和30%测试集。训练了两种模型:MLP和GCN。GCN在测试集上实现了80%的准确率,优于MLP的46%,展示了利用图信息的优势。
33 1
|
9天前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
|
1月前
|
机器学习/深度学习 传感器 数据可视化
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
|
1月前
|
存储 SDN 数据中心
|
1月前
|
传感器 监控 安全
|
1月前
|
人工智能 数据可视化
【数据分享】维基百科Wiki负面有害评论(网络暴力)文本数据多标签分类挖掘可视化
【数据分享】维基百科Wiki负面有害评论(网络暴力)文本数据多标签分类挖掘可视化
|
1月前
|
数据挖掘 开发工具 Android开发
R语言对git安卓包分类统计、聚类、复杂网络可视化分析
R语言对git安卓包分类统计、聚类、复杂网络可视化分析
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
R语言深度学习卷积神经网络 (CNN)对 CIFAR 图像进行分类:训练与结果评估可视化
R语言深度学习卷积神经网络 (CNN)对 CIFAR 图像进行分类:训练与结果评估可视化
|
1月前
|
机器学习/深度学习 并行计算 算法
MATLAB|【免费】概率神经网络的分类预测--基于PNN的变压器故障诊断
MATLAB|【免费】概率神经网络的分类预测--基于PNN的变压器故障诊断

热门文章

最新文章