深度学习记录1------model.fit()

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 深度学习记录1------model.fit()

深度学习之model.fit()

fit( x, y, batch_size=32, epochs=10, verbose=1, callbacks=None,
validation_split=0.0, validation_data=None, shuffle=True, 
class_weight=None, sample_weight=None, initial_epoch=0)

x:输入数据。如果模型只有一个输入,那么x的类型是numpy

array,如果模型有多个输入,那么x的类型应当为list,list的元素是对应于各个输入的numpy array


y:标签,numpy array


batch_size:整数,指定进行梯度下降时每个batch包含的样本数。训练时一个batch的样本会被计算一次梯度下降,使目标函数优化一步。


epochs:整数,训练终止时的epoch值,训练将在达到该epoch值时停止,当没有设置initial_epoch时,它就是训练的总轮数,否则训练的总轮数为epochs - inital_epoch


verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录


callbacks:list,其中的元素是keras.callbacks.Callback的对象。这个list中的回调函数将会在训练过程中的适当时机被调用,参考回调函数


validation_split:0~1之间的浮点数,用来指定训练集的一定比例数据作为验证集。验证集将不参与训练,并在每个epoch结束后测试的模型的指标,如损失函数、精确度等。注意,validation_split的划分在shuffle之前,因此如果你的数据本身是有序的,需要先手工打乱再指定validation_split,否则可能会出现验证集样本不均匀。


validation_data:形式为(X,y)的tuple,是指定的验证集。此参数将覆盖validation_spilt。


shuffle:布尔值或字符串,一般为布尔值,表示是否在训练过程中随机打乱输入样本的顺序。若为字符串“batch”,则是用来处理HDF5数据的特殊情况,它将在batch内部将数据打乱。


class_weight:字典,将不同的类别映射为不同的权值,该参数用来在训练过程中调整损失函数(只能用于训练)


sample_weight:权值的numpy

array,用于在训练时调整损失函数(仅用于训练)。可以传递一个1D的与样本等长的向量用于对样本进行1对1的加权,或者在面对时序数据时,传递一个的形式为(samples,sequence_length)的矩阵来为每个时间步上的样本赋不同的权。这种情况下请确定在编译模型时添加了sample_weight_mode=’temporal’。


initial_epoch: 从该参数指定的epoch开始训练,在继续之前的训练时有用。

fit函数返回一个History的对象,其History.history属性记录了损失函数和其他指标的数值随epoch变化的情况,如果有验证集的话,也包含了验证集的这些指标变化情况


附上本人案例之一:

model.fit(train_data=train_dataset,       #训练数据集
          eval_data=eval_dataset,         #测试数据集
          batch_size=64,                  #一个批次的样本数量
          epochs=50,                      #迭代轮次
          save_dir="/home/aistudio/xxx",  #把模型参数、优化器参数保存至自定义的文件夹
          save_freq=1,                    #设定每隔多少个epoch保存模型参数及优化器参数
          log_freq=100,                   #打印日志的频率
          verbose = 1                     #日志打印格式
)


相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
4月前
|
存储 SQL 程序员
模型(Model)
【8月更文挑战第19天】
80 2
|
5月前
|
机器学习/深度学习 存储 算法
查询模型的方法knn_model.pkl
【7月更文挑战第28天】
53 3
|
6月前
|
存储 机器学习/深度学习 PyTorch
【从零开始学习深度学习】19. Pytorch中如何存储与读取模型:torch.save、torch.load与state_dict对象
【从零开始学习深度学习】19. Pytorch中如何存储与读取模型:torch.save、torch.load与state_dict对象
|
7月前
|
PyTorch 算法框架/工具
pytorch - swa_model模型保存的问题
pytorch - swa_model模型保存的问题
102 0
|
7月前
|
机器学习/深度学习 存储 PyTorch
【深度学习】Pytorch torch.autograd 自动差分引擎
【1月更文挑战第26天】【深度学习】Pytorch torch.autograd 自动差分引擎
|
7月前
|
机器学习/深度学习 算法 数据可视化
模型训练(Model Training)
模型训练(Model Training)是指使用数据集对模型进行训练,使其能够从数据中学习到特征和模式,进而完成特定的任务。在深度学习领域,通常使用反向传播算法来训练模型,其中模型会根据数据集中的输入和输出,不断更新其参数,以最小化损失函数。
560 1
|
7月前
|
机器学习/深度学习 算法 PyTorch
GAN Step By Step (一步一步学习GAN)
GAN Step By Step (一步一步学习GAN)
|
测试技术 计算机视觉
sklearn.model_selection.learning_curve介绍(评估多大的样本量用于训练才能达到最佳效果)
sklearn.model_selection.learning_curve介绍(评估多大的样本量用于训练才能达到最佳效果)
|
机器学习/深度学习 Python
机器学习: Label vs. One Hot Encoder
机器学习: Label vs. One Hot Encoder
174 0
|
机器学习/深度学习 Python
判别式模型(discriminative model)和生成模型(generative model)
已知输入变量x,判别模型(discriminative model)通过求解条件概率分布P(y|x)或者直接计算y的值来预测y。生成模型(generative model)通过对观测值和标注数据计算联合概率分布P(x,y)来达到判定估算y的目的。
480 0
判别式模型(discriminative model)和生成模型(generative model)