【NLP】from glove import Glove的使用、模型保存和加载

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介: 使用 from glove import Glove 进行词向量训练、保存和加载的基本示例。

1 引言

不要被stackflow的上的一个的回答所误导。

1.png

2 使用方法举例

# 语料
sentense = [['你', '是', '谁'], ['我', '是', '中国人']]
corpus_model = Corpus()
# 训练语料
corpus_model.fit(sentense, window=10)
# 保存语料
corpus_model.save('corpus.model')
# 架子语料
corpus_model = Corpus.load('corpus.model')
print('Dict size: %s' % len(corpus_model.dictionary))
print('Collocations: %s' % corpus_model.matrix.nnz)
# 训练词向量
glove = Glove(no_components=100, learning_rate=0.05)
glove.fit(corpus_model.matrix, epochs=2,
          no_threads=1, verbose=True)
glove.add_dictionary(corpus_model.dictionary)
# 保存glove模型
glove.save('glove.model')

# 加载glove模型
model = Glove.load('glove.model')

Glove参数

  • no_components:词向量维度
  • learning_rate:学习率

Gove.fit参数

  • corpus_model.matrix : 语料矩阵
  • epochs=200 :迭代次数
  • no_threads=4 :多线程数
  • verbose=True:是否打印日志
目录
相关文章
|
11天前
|
机器学习/深度学习 自然语言处理 PyTorch
从零开始构建nlp情感分析模型!
本教程介绍了如何使用PyTorch和Hugging Face的Transformers库构建一个情感分析模型。主要内容包括导入所需库、读取训练数据集、加载预训练的BERT模型和分词器、定义情感数据集类、划分训练集和验证集、创建数据加载器、设置训练参数、训练模型、评估模型性能以及定义和测试预测函数。通过这些步骤,可以实现一个简单而有效的情感分析模型。
40 2
|
1月前
|
自然语言处理 PyTorch 算法框架/工具
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
【10月更文挑战第1天】随着深度学习技术的进步,预训练模型已成为自然语言处理(NLP)领域的常见实践。这些模型通过大规模数据集训练获得通用语言表示,但需进一步微调以适应特定任务。本文通过简化流程和示例代码,介绍了如何选择预训练模型(如BERT),并利用Python库(如Transformers和PyTorch)进行微调。文章详细说明了数据准备、模型初始化、损失函数定义及训练循环等关键步骤,并提供了评估模型性能的方法。希望本文能帮助读者更好地理解和实现模型微调。
68 2
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
|
1月前
|
机器学习/深度学习 自然语言处理 并行计算
探索深度学习中的Transformer模型及其在自然语言处理中的应用
【10月更文挑战第6天】探索深度学习中的Transformer模型及其在自然语言处理中的应用
87 0
|
1月前
|
机器学习/深度学习 自然语言处理 异构计算
【NLP自然语言处理】初识深度学习模型Transformer
【NLP自然语言处理】初识深度学习模型Transformer
|
1月前
|
机器学习/深度学习 自然语言处理 算法
【NPL自然语言处理】带你迅速了解传统RNN模型
【NPL自然语言处理】带你迅速了解传统RNN模型
|
3月前
|
机器学习/深度学习 自然语言处理 PyTorch
PyTorch与Hugging Face Transformers:快速构建先进的NLP模型
【8月更文第27天】随着自然语言处理(NLP)技术的快速发展,深度学习模型已经成为了构建高质量NLP应用程序的关键。PyTorch 作为一种强大的深度学习框架,提供了灵活的 API 和高效的性能,非常适合于构建复杂的 NLP 模型。Hugging Face Transformers 库则是目前最流行的预训练模型库之一,它为 PyTorch 提供了大量的预训练模型和工具,极大地简化了模型训练和部署的过程。
167 2
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【深度学习】探讨最新的深度学习算法、模型创新以及在图像识别、自然语言处理等领域的应用进展
深度学习作为人工智能领域的重要分支,近年来在算法、模型以及应用领域都取得了显著的进展。以下将探讨最新的深度学习算法与模型创新,以及它们在图像识别、自然语言处理(NLP)等领域的应用进展。
122 6
|
3月前
|
机器学习/深度学习 自然语言处理 数据处理
|
3月前
|
自然语言处理
【NLP】如何实现快速加载gensim word2vec的预训练的词向量模型
本文探讨了如何提高使用gensim库加载word2vec预训练词向量模型的效率,提出了三种解决方案:保存模型以便快速重新加载、仅保存和加载所需词向量、以及使用Embedding工具库代替word2vec原训练权重。
211 2
|
3月前
|
存储 自然语言处理
【NLP】gensim保存存储和加载fasttext词向量模型
【8月更文挑战第3天】如何使用Gensim库中的FastText模型来训练词向量,并演示了如何保存和加载这些训练好的模型。
74 2

热门文章

最新文章