python_numpy_计算对数收益率和还原问题

简介: python_numpy_计算对数收益率和还原问题

可以使用np.log和np.exp这两个:

x=5000
y=6000
ret=np.log(float(6000)/float(5000))
print ret
new_y=6000/float(np.exp(ret))
print new_y

#举一个更加复杂的例子:

import pandas as pd
import numpy as np
#计算收益率
x=range(0,1000,1)
y=range(1,1001,1)
data=map(lambda (a,b):float(a)/float(b), zip(x,y))
ret=np.log(data)
#还原价格序列
last_close=y[-1]
new_x=[]
for i in range(len(ret)):
    j=len(ret)-i-1
    if i==0:
        new_close=last_close
        new_x.append(new_close)
    if i>0:
        new_close=np.exp(ret[-(i)])*y[-i]
        new_x.append(new_close)
new_x.reverse()
目录
相关文章
|
2月前
|
Python
【10月更文挑战第10天】「Mac上学Python 19」小学奥数篇5 - 圆和矩形的面积计算
本篇将通过 Python 和 Cangjie 双语解决简单的几何问题:计算圆的面积和矩形的面积。通过这道题,学生将掌握如何使用公式解决几何问题,并学会用编程实现数学公式。
169 60
|
2月前
|
Python
Datetime模块应用:Python计算上周周几对应的日期
Datetime模块应用:Python计算上周周几对应的日期
86 1
|
20天前
|
Python
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
44 18
|
23天前
|
Python
使用Python计算字符串的SHA-256散列值
使用Python计算字符串的SHA-256散列值
25 7
|
1月前
|
机器学习/深度学习 算法 编译器
Python程序到计算图一键转化,详解清华开源深度学习编译器MagPy
【10月更文挑战第26天】MagPy是一款由清华大学研发的开源深度学习编译器,可将Python程序一键转化为计算图,简化模型构建和优化过程。它支持多种深度学习框架,具备自动化、灵活性、优化性能好和易于扩展等特点,适用于模型构建、迁移、部署及教学研究。尽管MagPy具有诸多优势,但在算子支持、优化策略等方面仍面临挑战。
83 3
|
2月前
|
Python
【10月更文挑战第15天】「Mac上学Python 26」小学奥数篇12 - 图形变换与坐标计算
本篇将通过 Python 和 Cangjie 双语实现图形变换与坐标计算。这个题目帮助学生理解平面几何中的旋转、平移和对称变换,并学会用编程实现坐标变化。
69 1
|
2月前
|
机器学习/深度学习 移动开发 Python
【10月更文挑战第11天】「Mac上学Python 22」小学奥数篇8 - 排列组合计算
本篇将通过 Python 和 Cangjie 双语讲解如何计算排列与组合。这道题目旨在让学生学会使用排列组合公式解决实际问题,并加深对数学知识和编程逻辑的理解。
69 4
|
2月前
|
数据可视化 Python
【10月更文挑战第12天】「Mac上学Python 23」小学奥数篇9 - 基础概率计算
本篇将通过 Python 和 Cangjie 双语实现基础概率的计算,帮助学生学习如何解决简单的概率问题,并培养逻辑推理和编程思维。
56 1
|
2月前
|
机器学习/深度学习 并行计算 大数据
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧2
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
97 10
|
2月前
|
数据挖掘 iOS开发 MacOS
利用Python计算农历日期
利用Python计算农历日期
126 4